Objective: Reduce rational expressions completely.

Concept

A rational expression is a ratio of polynomials, $\frac{p(x)}{q(x)}$, where the polynomial in denominator contains at least one variable. A rational expression is undefined for real values of the variable(s) which create values of 0 in the denominator, since division by 0 is undefined.

Examples of Rational Expressions: $\frac{x+3}{x y-5 y}, \frac{4}{9 x}, \frac{x^{2}-4 x+8}{x^{3}-8}$

$$
\begin{array}{ll}
\hline \text { Non-Examples: } & \frac{6 x+3}{2} \text { (denominator doesn't contain a variable) } \\
& \frac{1}{2} x^{2}-\frac{3}{2} x \text { (this is a binomial with rational coefficients) }
\end{array}
$$

Objective: Reduce rational expressions completely.

Concept

Rational expressions in simplest form cannot contain any common factors between the numerator and denominator.

Steps to Reduce a Rational Expression

1. Factor the numerator and denominator completely.
2. Reduce common factors.
3. Multiply remaining factors so the numerator and denominator are in standard form.

Objective: Reduce rational expressions completely.
Ex) Simplify each expression. State the excluded values.

$$
\begin{array}{r}
\frac{x-6}{x^{2}-5 x-6} \\
(x-6)(x+1)
\end{array}
$$

Note: The excluded values should be for the original expression.
© excluded values

$$
\begin{gathered}
x-6=0, \\
\downarrow+1=0 \\
\downarrow \neq 6 \quad x \neq-1 \\
\text { or } \\
x \neq-1,6
\end{gathered}
$$

(b) simplify

$$
\Rightarrow \frac{1}{x+1}
$$

Objective: Reduce rational expressions completely.
Ex) Simplify each expression. State the excluded values.

Binomials which are opposites reduce to -1 . Opposite binomials will be of the form $a x-b$ and $b-a x$.
(a) excluded

$$
\begin{gathered}
\frac{6-2 x}{x^{2}-9} \\
(x+3)\langle x-3)
\end{gathered}
$$

Objective: Reduce rational expressions completely.
Ex) Simplify each expression. State the excluded values.

$$
\begin{aligned}
& \frac{x^{3}+8 x}{x^{4}-64} \\
& \left(x^{2}+8\right)\left(x^{2}-8\right)
\end{aligned}
$$

(a) excluded values

$$
\begin{aligned}
& x^{2}+8=0, \\
& x^{2}-8=0 \\
& x^{2}=-8 \quad x^{2}=8 \\
& \sqrt{x^{2}}= \pm \sqrt{-8} \\
& x= \pm \sqrt{x^{2}}= \pm \sqrt{8} \\
& x, \sqrt{\sqrt{2}} \\
& \text { imaginary }
\end{aligned} \quad x \neq \pm 2 \sqrt{2} .
$$

(b) simplify

Objective: Reduce rational expressions completely.
Ex) Simplify each expression. State the excluded values.

$$
\begin{aligned}
& \frac{x^{3}+27}{x^{2}+3 x} \\
& x(x+3) \\
& \text { sum of cubes } \\
& x)^{3}+(3)^{3} \\
& \text { sc }
\end{aligned}
$$

(a) excluded values

$$
\begin{gathered}
x=0, \quad x+3=0 \\
\downarrow \\
x \neq 0 \quad x \neq-3 \\
x \neq-3,0
\end{gathered}
$$

(b) simplify.

$$
\frac{x^{2}-3 x+9}{x}
$$

Objective: Reduce rational expressions completely.
Ex) Simplify the expression.

$$
\begin{array}{r}
\frac{x^{3}-x^{2}-4 x+4}{4 x^{2}+8 x} \\
4 x(x+2)
\end{array}
$$

(a) excluded values
(b) simplify

$$
\begin{gathered}
\frac{4 x}{4}=\frac{0}{4}, \quad x+2=0 \\
\downarrow \neq 0 \quad x \neq-2 \\
x \neq-2,0
\end{gathered}
$$

$$
\begin{aligned}
& \frac{x^{2}(x-1)-4(x-1)}{4 \cdot x \cdot(x+2)} \\
& \frac{(x-1) \cdot\left(x^{2}-4\right)}{4 \cdot x \cdot(x+2)} \\
& \frac{(x-1)(x+2)(x-2)}{4 \cdot x \cdot(x+2)}
\end{aligned}
$$

$$
\frac{x^{2}-3 x+2}{4 x}
$$

