Objective: Calculate the average rate of change of a quadratic function for a specified interval.

Concept

Average Rate of Change

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{\Delta f(x)}{\Delta x}=\frac{\text { change in } f(x) \text { values }}{\text { change in } x \text { values }} \\
& \frac{\Delta f(x)}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} ; \text { for the interval }\left[x_{1}, x_{2}\right]
\end{aligned}
$$

The average rate of change of a function for an interval is equivalent to the slope of the line through the two points of the function. This line is called the secant line.

For the function $f(x)$ on the interval $[2,6]$ the average rate of change is $\frac{\Delta y}{\Delta x}=\frac{9-1}{6-2}=\frac{8}{4}=2$

Objective: Calculate the average rate of change of a quadratic function for a specified interval.
Ex) Calculate the average rate of change of the quadratic function shown in the graph for each specified interval.

A) $\frac{-2}{x_{1}} \leq x \leq \frac{-1}{x_{2}}$
B) $\left[\begin{array}{c}-1,0] \\ x_{1} \\ x_{2}\end{array}\right.$
(1) find the points
(1) find the points
$(-2,7)$ and $(-1,1)$

$$
\text { (2) } \frac{\Delta g(x)}{\Delta x}=\frac{1-7}{-1-(-2)}
$$

$$
\text { (2) } \frac{\Delta g(x)}{\Delta x}=\frac{-1-1}{0-(-1)}
$$

$$
=\frac{-6}{1}=-6
$$

$$
=\frac{-2}{1}=-2
$$

(3) The average rate of change on the interval $[-1,0]$ is -2 .
C) A negative average rate of change means the function is decreasing

Objective: Calculate the average rate of change of a quadratic function for a specified interval.
Practice) Calculate the average rate of change of the quadratic function shown in the graph for each specified interval.

A) $[0,2]$
1.points: $(0,-1),(2,7)$
2. $\frac{\Delta g(x)}{\Delta x}=\frac{7-(-1)}{2-0}=\frac{8}{2}=4$

The average rate of change for $g(x)$ on the interval [0,2] is 4.
B) A positive average rate of change means the function is \qquad on that interval.

Objective: Calculate the average rate of change of a quadratic function for a specified interval.
Ex) Calculate the average rate of change for $d(x)=3 x^{2}-21 x+2$ on the interval $[-3,2]$.

$$
x_{1} x_{2}
$$

(1) find the points $(-3,92)$ and $(2,-28)$

$$
\begin{aligned}
x=-3
\end{aligned} \quad \begin{array}{rlrl}
d(-3) & =3(-3)^{2}-21(-3)+2 \\
& 3.9 & -21.3 \\
& =27+2=92 \\
x=2
\end{array} \quad \begin{aligned}
d(2) & =3(2)^{2}-21(2)+2 \\
& =12+-21.2
\end{aligned}
$$

(2) $\frac{\Delta d(x)}{\Delta x}=\frac{-28-92}{2-(-3)}=\frac{-120}{5}=-24$
(3) The average rate of change on the interval $[-3,2]$ is -24 .

Objective: Calculate the average rate of change of a quadratic function for a specified interval.

Practice) Calculate the average rate of change for $h(x)=-2 x^{2}+17 x-5$ on the interval $[-2,3]$.

$$
\begin{aligned}
& \text { 1.points: }(-2,-47),(3,28) \\
& \text { 2. } \frac{\Delta h(x)}{\Delta x}=\frac{28-(-47)}{3-(-2)}=\frac{75}{5}=15
\end{aligned}
$$

The average rate of change for $h(x)$ on the interval $[-2,3]$ is 15 .

Objective: Calculate the average rate of change of a quadratic function for a specified interval.
Practice) Calculate the average rate of change of the quadratic function represented by the table of values over the interval $[-6,-3]$. Round to three decimal places.

x	$f(x)$
-6	-14
-5	-6
-4	-1
-3	2
-2	3
-1	2
0	-1

1. use points $(-6,-14)$ and $(-3,2)$

$$
\text { 2. } \begin{aligned}
\frac{\Delta f(x)}{\Delta x} & =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
& =\frac{2-(-14)}{-3-(-6)}=\frac{16}{3} \approx 5.333
\end{aligned}
$$

The average rate of change for $f(x)$ on the interval $[-6,-3]$ is about 5.333.

Objective: Calculate the average rate of change of a quadratic function for a specified interval.

Closure

Given the graph of $f(x)$ would you expect the average rate of change for the interval $[4,6]$ to be positive or negative? Explain your reasoning.

I would expect the average rate of change for the interval $[4,6]$ to be negative because the function is decreasing on this interval.

