

Objective: Calculate the average rate of change of a quadratic function for a specified interval.

Practice) Calculate the average rate of change for $h(x) = -2x^2 + 17x - 5$ on the interval [-2,3].

1.points:
$$(-2, -47), (3, 28)$$

2. $\frac{\triangle h(x)}{\triangle x} = \frac{28 - (-47)}{3 - (-2)} = \frac{75}{5} = \boxed{15}$

The average rate of change for h(x) on the interval [-2,3] is 15. Objective: Calculate the average rate of change of a quadratic function for a specified interval.

Practice) Calculate the average rate of change of the quadratic function represented by the table of values over the interval [-6, -3]. Round to three decimal places.

x	$f(\mathbf{x})$
-6	-14
-5	-6
-4	-1
-3	2
-2	3
-1	2
0	-1

1. use points
$$(-6, -14)$$
 and $(-3, 2)$
2. $\frac{\Delta f(x)}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$
 $= \frac{2 - (-14)}{-3 - (-6)} = \frac{16}{3} \approx 5.333$

The average rate of change for f(x) on the interval [-6, -3] is about 5.333.

Objective: Calculate the average rate of change of a quadratic function for a specified interval.

Closure

Given the graph of f(x) would you expect the average rate of change for the interval [4,6] to be positive or negative? Explain your reasoning.

I would expect the average rate of change for the interval [4,6] to be negative because the function is decreasing on this interval.