Objective: Solve a quadratic equation by completing the square

Concept

Solving by Completing the Square includes the procedure to rewrite a quadratic expression as a perfect square trinomial in its factored form so that the equation can be solved using the Square Root Property.

Solve by completing the square.

$$
\begin{aligned}
& x^{2}-18 x+3=0 \text { standard form } \\
& \begin{array}{l}
\text { create a } \\
\text { perfect } \\
\text { square trinomial }
\end{array}\left\{\begin{array}{l}
x^{2}-18 x+\ldots \\
x^{2}-18 x+81=-3+ \\
\hline 8+81
\end{array}\right. \\
& (x-9)^{2}=78 \\
& \begin{array}{c}
\begin{array}{c}
\text { square } \\
\text { root } \\
\text { propery }
\end{array} \rightarrow
\end{array} \begin{array}{l}
\sqrt{(x-9)^{2}}= \pm \sqrt{78} \rightarrow \sqrt{2} \cdot \sqrt{39} \\
x-9= \pm \sqrt{78}
\end{array} \\
& +9+9 \\
& x=9-\sqrt{78}, 9+\sqrt{78}
\end{aligned}
$$

Objective: Solve a quadratic equation by completing the square

Concept

$\underline{\text { Steps to Solve by Completing the Square when } a=1}$

1. From standard form, $x^{2}+b x+c=0$, move the constant to write the equation in the form $x^{2}+b x=-c$
2. Create a perfect square trinomial $x^{2}+b x+\left(\frac{b}{2}\right)^{2}$. Don't forget to balance the equation by adding $\left(\frac{b}{2}\right)^{2}$ to both sides.
3. Factor the perfect square trinomial and simplify the right side of the equation.
4. Use the square root property. (Don't forget \pm.)
5. Finish solving for x. Simplify the solutions as much as possible.
6. Write the final solution set.

Objective: Solve a quadratic equation by completing the square
Ex) Solve by completing the square. Give exact solutions in simplest form. State whether the solutions are rational, irrational, or imaginary.

$$
x^{2}-2 x+18=0 \quad \text { standard form }
$$

(1)
$-18 \quad-18$

$$
x^{2}-2 x=-18
$$

Objective: Solve a quadratic equation by completing the square
Ex) Solve by completing the square. Give exact solutions in simplest form. State whether the solutions are rational, irrational, or imaginary.

$$
\begin{aligned}
& \begin{aligned}
x_{\uparrow}^{2}-15= & -14 x \\
& +14 x
\end{aligned} \\
& \text { (1) standard } \frac{+14 x+14 x}{x^{2}+14 x-15=0} \\
& +15+15
\end{aligned}
$$

(2)

$(x+7)(x+7)$

(5) square
root prop $\sqrt{(x+7)^{2}}= \pm \sqrt{64}$
$x+7= \pm 8$

