Objective: Write a quadratic function in vertex form from a graph

Concept

Steps to Write a Quadratic Function in Vertex Form

1. Identify the vertex, (h, k).
2. Substitute (h, k) into vertex form: $f(x)=a(x-h)^{2}+k$
3. Identify another point on the function, (x, y).
4. Substitute (x, y) into vertex form and solve for $a: f(x)=a(x-h)^{2}+k$
5. Write the final function with the values of a, h, and k.

Objective: Write a quadratic function in vertex form from a graph
Ex) Write the vertex form of the quadratic function represented by the graph.
vertex form

$$
f(x)=\underline{a}(x-\underline{h})^{2}+k
$$

(1) find h and k vertex $(-5,-6)$

$$
(h, k)
$$

(2) put $h+k$ in vertex form

$$
\begin{aligned}
& f(x)=a(x-(-5))^{2}+-6 \\
& f(x)=a(x+5)^{2}-6
\end{aligned}
$$

(3) need another point on the parabola

$$
\begin{aligned}
\text { point }=(0,14) & \begin{array}{ll}
f(x) & =a(x+5)^{2}-6 \\
(x, y) & \frac{1}{1} \\
14 & =a(\underbrace{1}+5)^{2}-6
\end{array}
\end{aligned}
$$

(4) find a

$$
\begin{aligned}
& 14=25 a-6 \\
& +6 \\
& \begin{array}{l}
\frac{20}{25}=\frac{21}{25} \\
25
\end{array} \\
& a=\frac{20}{25}=\frac{4}{5}=a \\
& \text { reduce }
\end{aligned}
$$

Objective: Write a quadratic function in vertex form from a graph
Ex) Write the vertex form of the quadratic function represented by the graph.

$$
f(x)=a(x-h)^{2}+k
$$

(1) vertex $=(0,50)$

$$
(\underbrace{1}, \underbrace{}_{2}
$$

(2)

$$
\begin{aligned}
& f(x)=a\left(\frac{x-0}{b}\right)^{2}+50 \\
& f(x)=a x^{2}+50
\end{aligned}
$$

(3) need another point

$$
\begin{aligned}
& \text { point }=(2,18) \\
&(x, y) \\
& \frac{f(x)}{\downarrow}=a x^{2}+50 \\
& 18=a(2)^{2}+50 \quad \text { find } a \\
&-18=4 a+50 \\
&-50
\end{aligned}
$$

$$
-\frac{32}{4}=\frac{4 a}{4}
$$

$$
a=-8
$$

$$
f(x)=-8 x^{2}+50
$$

Objective: Write a quadratic function in vertex form from a graph
Ex) A tennis ball is tossed upward from a balcony. The height of the ball above the ground, in feet, at a time of t seconds can be modeled by the function shown in the graph. Find the vertex form of the function, $h(t)$, that could be used to model this situation.
vertex form

$$
h(t)=a(t-h)^{2}+k
$$

(1) vertex $(0.5,16)$ $\left(r_{2}, k\right)$
(2) $h(t)=a(t-0.5)^{2}+16$
(3) another point

$$
\begin{aligned}
\text { point }= & (0,12) \\
& (t, h(t))
\end{aligned}
$$

$$
\begin{aligned}
h(t) & =a\left(t^{t}-0.5\right)^{2}+16 \\
\psi & =a(0-0.5)^{2}+16 \\
12 & =a(-0.5)^{2}+16
\end{aligned}
$$

$$
\begin{array}{r}
12 \\
-16
\end{array}=0.25 a+16
$$

\qquad $h(t)=-16(t-0.5)^{2}+16$

$$
a=-16
$$

Objective: Write a quadratic function in vertex form from a graph
Ex) Adrian is building a homemade skate ramp and wants to model the shape as a parabola. He sketches out a cross section shown below. Write the vertex form of the function, $H(L)$, that models the curve of the ramp.

vertex form

$$
\begin{gathered}
H(L)=a(L-h)^{2}+k \\
\text { (1) vertex }=(0,0) \\
(h, k) \\
H(L)=a(L-0)^{2}+0 \\
H(L)=a L^{2}
\end{gathered}
$$

(3) another point

$$
\begin{aligned}
\text { point } & =(10,6) \\
\left.\frac{1+(L)}{b}\right) & =a L^{2} \\
6 & =a(10)^{2}
\end{aligned}
$$

(4) find

$$
\begin{aligned}
& \frac{6}{100}=\frac{100 a}{100} \\
& a=0.06
\end{aligned}
$$

Objective: Write a quadratic function in vertex form from a graph

Closure

Matthew thinks he can use the points $(0,11)$ and $(4,3)$ to write the vertex form of the quadratic function. Do you agree or disagree with Matthew? Explain your reasoning.

I disagree with Matthew because neither of the points he wants to use are the vertex of the parabola, and the values of h and k in the vertex form $f(x)=a(x-h)^{2}+k$ have to be the coordinates of the vertex.

