Objective: Define and Evaluate Logarithms
Concept
An exponential function such as $f(x)=2^{x}$ accepts values of the exponent as inputs and delivers the corresponding value of the power as the outputs.

The inverse of an exponential function is called a logarithmic function.

The inputs ( $x$-values/domain) of a logarithmic function represent the value of a power.

The corresponding outputs ( $y$-values/range) represent the value of the exponent.
For $f(x)=2^{x}$, the inverse function is $f(x)=\log _{2} x$, which is read either as "the logarithm with base 2 of $x$ " or simply as "log base 2 of $x$."

> A key concept to remember:

> A logarithm is equal to an exponent value.

Objective: Define and Evaluate Logarithms Concept
The graph of the function $f(x)=2^{x}$ is shown. Graph its inverse $f(x)=\log _{2} x$ and then complete the table.

| $x$ | $f(x)=\log _{2} x$ |
| :---: | :---: |
| 8 | 3 |
| 4 | 2 |
| 2 | 1 |
| 1 | 0 |
| $1 / 2$ | -1 |
| $1 / 4$ | -2 |

asymptote of $y=\log _{2} x$


## Objective: Define and Evaluate Logarithms

Concept
In general, the exponential function $f(x)=b^{x}$, where $b>0$ and $b \neq 1$, has the logarithmic function $f^{-1}(x)=\log _{b} x$ as its inverse. For instance, if $f(x)=3^{x}$, then $f^{-1}(x)=\log _{3} x$, and if $f(x)=\left(\frac{1}{4}\right)^{x}$, then $f^{-1}(x)=\log _{\frac{1}{4}} x$.

The inverse relationship between exponential functions and logarithmic functions also means that you can write an exponential equation of the form $b^{x}=a$ as a logarithmic equation of the form $\log _{b} a=x$.

Exponential Form


Logarithmic Form
$\log _{b} a=x$

Objective: Define and Evaluate Logarithms
Ex) Complete the table by writing each given equation in its alternate form.


Objective: Define and Evaluate Logarithms

## Concept

Some logarithms can be evaluated without a calculator. If it is possible to write the exponential form with the powers on both sides with the same base, then we can use the Exponential Property of Equality to find the logarithm's value.

```
Exponential Property of Equality
If }\quad\mp@subsup{b}{}{m}=\mp@subsup{b}{}{n
Then m=n equal exponents
```


## Steps to Evaluate a Logarithm Without a Calculator

1. Rewrite the logarithm in exponential form. Use a variable to represent the logarithm's value. (the exponent)
2. Rewrite both sides of the equation so they are powers of the same base.
3. Use the Exponential Property of Equality and then solve for the variable if necessary. Make sure you understand the variable's value is the value of the logarithm and write your conclusion.

## Objective: Define and Evaluate Logarithms

Ex) Evaluate each logarithm without a calculator.


Objective: Define and Evaluate Logarithms
Ex) Evaluate each logarithm without a calculator.
$\log _{36} 6$
(1) $\log _{36} 6=y$
(2) $36^{y}=6$
(3) $\left(6^{2}\right)^{y}=6$

$$
6^{2 y}=6^{1}
$$

(4) $\quad 2 y=1$

$$
y=\frac{1}{2}
$$

(5) $\log _{36} 6=\frac{1}{2}$

$$
\log _{\frac{1}{7}} 49
$$

(1) $\log _{\frac{1}{7}} 49=y$
(2) $\left(\frac{1}{7}\right)^{y}=49$
(3) $\left(7^{-1}\right)^{y}=7^{2}$

$$
7^{-1 y}=7^{2}
$$

(4) $\quad-1 y=2$

$$
y=-2
$$

(5) $\log _{\frac{1}{2}} 49=-2$

Objective: Define and Evaluate Logarithms
Ex) Evaluate each logarithm without a calculator.

$$
\log _{4} 32
$$

(1) $\log _{4} 32=y$
(2) $4^{y}=32$
(3) $\left(2^{2}\right)^{y}=2^{5}$

$$
2^{2 y}=2^{5}
$$

(4)

$$
\begin{array}{r}
2 y=5 \\
y=\frac{5}{2}
\end{array}
$$

(5) $\log _{4} 32=5$


