Objective: Understand Degree and Radian Measure of Angles

Concept

You know from earlier learning that an angle of 180° makes a straight line. It is also possible to have angles that measure greater than $\mathbf{1 8 0}^{\circ}$ and angles that have negative measures.

An angle in standard position, or a central angle, has its vertex at the origin and its initial side on the positive x-axis. The terminal side of the angle can be in any quadrant or on an axis.

Objective: Understand Degree and Radian Measure of Angles

Concept

A positive angle measure is measured in a counterclockwise direction from the positive x-axis.

A negative angle measure is measured in a clockwise direction from the positive x-axis.

Objective: Understand Degree and Radian Measure of Angles

Concept

> | A quadrantal angle is an angle in standard position with its terminal |
| :--- |
| side on an axis. Examples of quadrantal angles are: |
| $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ},-90^{\circ},-180^{\circ},-360^{\circ}$ |

Objective: Understand Degree and Radian Measure of Angles
Concept
First Revolution Positive and Negative Quadrantal Angles in Degree Measure

Objective: Understand Degree and Radian Measure of Angles

Ex) Draw each angle in standard position.

Objective: Understand Degree and Radian Measure of Angles
Practice) Draw each angle in standard position.

$$
-45^{\circ}
$$

Objective: Understand Degree and Radian Measure of Angles

Concept

The concept of degrees is based on dividing a circle into 360 equal sectors. Each sector is equal to 1°.

Since a degree measure is not a real number, some problems cannot be solved using degrees. Another way to measure angles is in radians. The radian measure of an angle is a real number measure that is equal to the length of the arc subtended by the angle in a circle with a radius of 1 unit.

Objective: Understand Degree and Radian Measure of Angles

Concept

In a circle of radius 1 unit, the circumference is equal to 2π. The circumference is the arc subtended by an angle of 360°. Therefore, $\mathbf{3 6 0}=\mathbf{2 \pi}$ radians.

$$
\begin{gathered}
C=2 \pi r \\
C=2 \pi \cdot 1 \\
C=2 \pi
\end{gathered}
$$

The equivalency ratio $\frac{2 \pi \text { radians }}{360^{\circ}}$, which can be reduced to $\frac{\pi \text { radians }}{180^{\circ}}$, can be used to convert degree measure to radian measure.

Its reciprocal, $\frac{180^{\circ}}{\pi \text { radians }}$, can be used to convert radians to degrees.

Objective: Understand Degree and Radian Measure of Angles
Concept

Degrees to Radians Conversion Ratio	$\frac{\pi \text { radians }}{180^{\circ}}$
Radians to Degrees Conversion Ratio	$\frac{180^{\circ}}{\pi \text { radians }}$

Objective: Understand Degree and Radian Measure of Angles
Ex) Convert each degree measure to radians and each radian measure to degrees.

Degree Measure	Radian Measure	
135°	$\frac{135^{2}}{1} \cdot \frac{\pi \mathrm{rad}}{180^{\circ}}=\frac{135 \pi}{180}=\frac{3 \pi}{4}$	
$30^{570^{\circ}}$	$\frac{570^{2}}{1} \cdot \frac{\pi \mathrm{rad}}{180^{-2}}=\frac{578 \pi}{180}=$	$\frac{19 \pi}{6}$
$\frac{5 \pi}{6} \cdot \frac{180^{\circ}}{\pi_{1}}=150^{\circ}$	$\frac{5 \pi}{6}$	
-30°	$\frac{-3 \theta^{2}}{1} \cdot \frac{\pi \mathrm{rad}}{\frac{18 \theta^{2}}{6}}=-\frac{\pi}{6}$	
$\frac{9+1}{44^{\prime}} \cdot \frac{180^{\circ}}{\pi \pi r a d}=405^{\circ}$	$\frac{9 \pi}{4}$	
$\frac{\pi}{3} \text { rad } \cdot \frac{60+80^{\circ}}{\pi r^{\circ} \mathrm{rad}}=60^{\circ}$	$\frac{\pi}{3}$	

Objective: Understand Degree and Radian Measure of Angles
Concept
First Revolution Positive and Negative Quadrantal Angles in Radian Measure

$$
-\frac{3 \pi}{2}
$$

Objective: Understand Degree and Radian Measure of Angles
Ex) Draw each angle in standard position.

Objective: Understand Degree and Radian Measure of Angles
Practice) Draw each angle in standard position.
$-\frac{5 \pi}{6}$
$\frac{7 \pi}{4}$

Objective: Understand Degree and Radian Measure of Angles

Closure

What is the difference between a 90° angle of rotation and a -90° angle of rotation?

The 90° angle has its terminal side along the positive y-axis. The -90° has its terminal side along the negative y-axis.

