Objective: Find the restricted domain of a square root function.

Concept

The domain of a square root function is determined by making the radicand non-negative (radicand $\geq \mathbf{0}$) and solving for \boldsymbol{x}. This is necessary so the range will be part of the set of all real numbers instead of the set of complex numbers.

Objective: Find the restricted domain of a square root function.
Ex) Find the domain of the square root function without using a graph. Use set and interval notation.

$$
g(x)=2 \sqrt{5 x-3}-2
$$

(1) r

$$
\begin{aligned}
\text { radicand } & \geq 0 \\
5 x-3 & \geq 0 \\
\frac{+3}{\frac{5 x}{5}} & \geq \frac{3}{5} \\
x & \geq \frac{3}{5}
\end{aligned}
$$

(2) set notation

$$
\{x \mid x \geq 3 / 5\}
$$

interval

$$
\left[\frac{3}{5}, \infty\right)
$$

Objective: Find the restricted domain of a square root function.
Ex) Find the domain of the square root function without using a graph. Use set and interval notation.

$$
g(x)=\sqrt{-\frac{1}{2}(x+2)}+1
$$

(1) radicand ≥ 0

$$
\begin{aligned}
-2 \cdot \frac{-1}{2} \cdot(x+2) & \geq 0^{-\frac{1}{2}} \\
x+2^{2} & \leq 0 \\
-2 & -2 \\
x & \leq-2
\end{aligned}
$$

(2) domain

$$
\begin{aligned}
& \{x \mid x \leq-2\} \\
& \text { set notation } \\
& (-\infty,-2] \\
& \text { interval notation }
\end{aligned}
$$

Objective: Find the restricted domain of a square root function.
Ex) Find the domain of the square root function without using a graph. Use set and interval notation.

$$
g(x)=\sqrt{x^{2}-12}+10
$$

(1) radicand ≥ 0

$$
x^{2}-12 \geq 0
$$

(a) $x^{2}-12=0$

(c) test the intervals u using $x=0$ and $x^{2}-12$
(2)domain

$$
\{x \mid x \leq-2 \sqrt{3} \text { or } x \geq 2 \sqrt{3}\}
$$ set notation

$$
(-\infty,-2 \sqrt{3}] \cup[2 \sqrt{3}, \infty)
$$ interval notation

Objective: Find the restricted domain of a square root function.
Ex) Find the domain of the square root function without using a graph. Use set and interval notation.

$$
g(x)=\sqrt{49-x^{2}}-1
$$

(1) $49-x^{2} \geq 0$

$$
\begin{aligned}
& \text { (a) } 49-x^{2}=0 \\
& (7)^{2}-(x)^{2} \\
& (7-x)(7+x)=0 \\
& 7-x=0 \text { or } 7+x=0 \\
& \frac{+x+x}{7=x} \quad \frac{7}{x=-7}
\end{aligned}
$$

(b) create number line using zens of $49-x^{2}=0$

(c) test intervals using $x=0$ and $49-x^{2}$
(2) domain

$$
\{x \mid-7 \leq x \leq 7\}
$$

set notation

$$
[-7,7]
$$

interval' notation

Objective: Find the restricted domain of a square root function.
Ex) Find the domain of the square root function without using a graph. Use set and interval notation.

$$
g(x)=\sqrt{x^{2}-5 x+4}-1
$$

(1) $x^{2}-5 x+4 \geq 0$
(a)

$$
\begin{gathered}
x^{2}-5 x+4=0 \\
(x-4)(x-1)=0 \\
x-4=0 \quad x-1=0 \\
x=4 \quad x=1
\end{gathered}
$$

(b) create number line

(chest inturuds using $x=0$ and $x^{2}-5 x+4$
(2) domain

$$
\{x \mid x \leq 1 \text { or } x \geq 4\}
$$

set notation
$(-\infty, 1] \cup[4, \infty)$ interval notation

Objective: Find the restricted domain of a square root function.

Closure

Adam found the restricted domain of a square root function. His work is shown. Do you agree or disagree with his conclusion? Explain your reasoning.

$$
\begin{gathered}
g(x)=\sqrt{-\frac{1}{3}(x-5)-19} \\
-\frac{1}{3}(x-5) \geq 0 \\
-3 \cdot-\frac{1}{2}(x-5) \geq 0 \cdot-3 \\
x-5 \leq 0 \\
+5+5 \\
x \leq 5
\end{gathered} \begin{aligned}
& \text { Domain: }\{x \mid x \leq 5\} ; \quad \begin{array}{l}
\text { I agree with Adam's conclusion because he } \\
\text { started by setting the radicand greater than } \\
\text { or equal to zero, then he solved for } x, \\
\text { correctly changing the inequality sign when } \\
\text { he multiplied by a negative number, in this } \\
\text { case }-3, \text { before adding } 5 \text { to both sides to } \\
\text { end with the restricted domain. }
\end{array} \\
& \hline
\end{aligned}
$$

