Objective: Simplify trigonometric expressions.

Concept

The Pythagorean Identities are based on the Pythagorean Theorem and its application to the Unit Circle.

Objective: Simplify trigonometric expressions.

Concept

From the first Pythagorean Identity other identities can be derived.
dividing by $\sin ^{2} \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

dividing by $\cos ^{2} \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}$
$\tan ^{2} \theta+1=\sec ^{2} \theta$

Objective: Simplify trigonometric expressions.

Fundamental Trigonometric Identities

membrize	Pythagorean Identities	
$\sin ^{2} \theta+\cos ^{2} \theta=1$	$1+\cot ^{2} \theta=\csc ^{2} \theta$	$\tan ^{2} \theta+1=\sec ^{2} \theta$
$\sin ^{2} \theta=1-\cos ^{2} \theta$	$\cot ^{2} \theta=\csc ^{2} \theta-1$	$\tan ^{2} \theta=\sec ^{2} \theta-1$
$\cos ^{2} \theta=1-\sin ^{2} \theta$		

Objective: Simplify trigonometric expressions.
Fundamental Trigonometric Identities

	Reciprocal Identities	
$\csc \theta=\frac{1}{\sin \theta}$	$\sec \theta=\frac{1}{\cos \theta}$	$\cot \theta=\frac{1}{\tan \theta}$
$\sin \theta=\frac{1}{\csc \theta}$	$\cos \theta=\frac{1}{\sec \theta}$	$\tan \theta=\frac{1}{\cot \theta}$

Quotient Identities

$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}$

Objective: Simplify trigonometric expressions.

Concept

Strategies for Simplifying a Trigonometric Expression

1. Substitute using identities.
2. Factor.
3. Distribute.
4. Get a common denominator.
5. Multiply by a ratio of 1 .
6. Rewrite in terms of sine and cosine.

Recognizing a Simplified Trigonometric Expression

1. The expression is written in terms of a single trigonometric function.
2. The expression does not involve any fraction forms.
3. No more identities can be used to further simplify the expression.

Objective: Simplify trigonometric expressions.
Simplify the expression.

$$
\begin{aligned}
& \sin x \cos ^{2} x-\sin x \\
& \sin x \cdot \cos ^{2} x-\sin x
\end{aligned}
$$

(1) factor

$$
\begin{aligned}
& \sin x\left(\cos ^{2} x-1\right) \\
& \sin x \cdot-1\left(-\cos ^{2} x+1\right) \\
& -\sin x\left(\frac{\left.1-\cos ^{2} x\right)}{\downarrow}\right. \\
& -\sin x \cdot \sin ^{2} x \\
& -\sin ^{3} x
\end{aligned}
$$

Objective: Simplify trigonometric expressions.
Simplify the expression.

$$
\cos ^{2} x \underline{\csc x}-\underline{\csc x}
$$

$$
\csc x\left(\frac{\cos ^{2} x-1}{\downarrow}\right)
$$

(2) identity

$$
\begin{aligned}
-1 \cdot\left(\sin ^{2} x\right. & \left.=1-\cos ^{2} x\right) \\
& -\sin ^{2} x=-1+\cos ^{2} x \\
& -\sin ^{2} x=\cos ^{2} x-1
\end{aligned}
$$

Objective: Simplify trigonometric expressions.
Simplify the expression.

$$
\csc x-\cos x \cot x
$$

$$
\begin{array}{ll}
\csc x-\frac{\cos x}{1} \cdot \frac{\cos x}{\sin x} & \text { identity: } \cot x=\frac{\cos x}{\sin x} \\
\csc x-\frac{\cos ^{2} x}{\sin x} & \text { identity: } \csc x=\frac{1}{\sin x} \\
\frac{1}{\sin x}-\frac{\cos ^{2} x}{\sin x} & \text { identity:1- } \cos ^{2} x=\sin ^{2} x \\
\frac{1-\cos ^{2} x}{\sin x} & \sin x
\end{array}
$$

Objective: Simplify trigonometric expressions.
Ex) Factor the expression.

$$
\sec ^{2} \theta-1
$$

(1) difference of two squares
structure $x^{2}-1$ $(x)^{2}-(1)^{2}$ $(x+1)(x-1)$
check:

$$
\sec ^{2} \theta+\sec \theta \div \sec \theta-1
$$

Objective: Simplify trigonometric expressions.
Ex) Factor the expression.

$$
\begin{aligned}
& 4 \tan ^{2} \theta+\tan \theta-3 \\
& 4 \tan \theta, \tan \theta \\
& \text { * quadratic } \\
& \text { trinomial } \\
& \text { structure }(4 \tan \theta-3)(\tan \theta+1) \\
& 4 x^{2}+x-3 \\
& (4 x-3)(x+1) \text { cheek: } 4 \tan ^{2} \theta+\frac{4 \tan \theta-3 \tan \theta-3}{+\tan \theta}
\end{aligned}
$$

Objective: Simplify trigonometric expressions.
Practice) Factor the expression.

$$
\begin{array}{cc}
\begin{array}{c}
1-\cos ^{2} \theta \\
\text { structure } \\
1-x^{2}
\end{array} & (1+x)(1-x)
\end{array} \begin{aligned}
& (1+\cos \theta)^{2} \\
& (1+\cos \theta)(1-\cos \theta)
\end{aligned}
$$

check: $1-\cos \theta+\cos \theta-\cos ^{2} \theta$

Objective: Simplify trigonometric expressions.
Practice) Factor the expression.
structure

$$
\begin{aligned}
& 2 x^{2}-7 x+6 \\
& (2 x-3)(x-2)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\left.2 \csc ^{2} \theta-7 \csc \theta+6\right)}{\left(\begin{array}{l}
-1,-6 \\
-2,-3
\end{array}\right.} \\
\frac{(2 \csc \theta-3)(\csc \theta-2)}{-7 \csc \theta}-\sqrt{-2 \csc \theta-3 \csc \theta}+6
\end{gathered}
$$

Objective: Simplify trigonometric expressions.
Practice) Factor the expression.
structure $6 x^{2}-3 x$
$3 x(2 x-1)$

$$
\frac{6 \sin ^{2} \theta-3 \sin \theta}{3 \sin \theta(2 \sin \theta-1)}
$$

cheek: $6 \sin ^{2} \theta-3 \sin \theta$

Objective: Simplify trigonometric expressions.
Ex) Factor the expression.

$$
\csc ^{2} x-\cot x-3
$$

(1) substitution for

$$
\begin{aligned}
& \csc ^{2} x \\
& \frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x} \\
& 1+\cot ^{2} x=\csc ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1+\cot ^{2} x-\cot x-3 \\
(\cot \\
(\cot x-2)(\cot x-2
\end{array}
\end{aligned}
$$

(2) structure
cheek. $\cot ^{2} x+\frac{\cot x-2 \cot x}{-\cot x}-2$

$$
\begin{gathered}
x^{2}-x-2 \\
(x-2)(x+1)
\end{gathered}
$$

Objective: Simplify trigonometric expressions.
Practice) Factor the expression.

$$
\sec ^{2} x+3 \tan x+1
$$

$$
\begin{aligned}
& \text { (1) } \frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x} \\
& \\
& \\
& \tan ^{2} x+1=\sec ^{2} x
\end{aligned}
$$

$$
\operatorname{tar}^{2} x+3 \tan x+2
$$

(2) structure

$$
(\tan x+2)(\tan x+1)
$$

$$
\begin{gathered}
x^{2}+3 x+2 \\
(x+2)(x+1)
\end{gathered}
$$

Objective: Simplify trigonometric expressions.

Ex) Perform the addition and simplify.

$$
\frac{\sin \theta}{1+\cos \theta}+\frac{\cos \theta}{\sin \theta}
$$get a common den.

(2)

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\sin ^{2} \theta=1-\cos ^{2} \theta
\end{gathered} \quad \frac{\sin \theta-\sin \theta \cdot \cos \theta}{\frac{1-\cos ^{2} \theta}{\sin \theta-\sin \theta \cos \theta}}+\frac{\cos \theta \cdot \sin \theta}{\sin ^{2} \theta}+\frac{\sin \theta \cos \theta}{\sin ^{2} \theta}+\frac{\sin \theta-\sin \theta \cos \theta+0 \sin \theta \cos \theta}{\sin ^{2} \theta}
$$

$$
\begin{aligned}
& \text { reduce } \\
& \text { structure } \\
& \frac{x}{\frac{x}{x} \cdot x}=\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \theta}{\sin ^{2} \theta} \rightarrow & \frac{1}{\sin \theta} \\
& \frac{1}{\cos \theta}
\end{aligned}
$$

Objective: Simplify trigonometric expressions.
Practice) Perform the addition and simplify.

$$
\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}
$$

$$
\frac{1}{1+\sin \theta} \cdot \frac{1-\sin \theta}{1-\sin \theta}+\frac{1}{1-\sin \theta} \cdot \frac{1+\sin \theta}{1+\sin \theta}
$$

$$
\frac{1-\sin \theta}{1-\sin ^{2} \theta}+\frac{1+\sin \theta}{1-\sin ^{2} \theta}
$$

$$
\frac{1-\sin \theta+1+\sin \theta}{1-\sin ^{2} \theta} \quad \text { identity : } \cos ^{2} \theta=1-\sin ^{2} \theta
$$

$$
\frac{1-\sin \theta+1 \pm \sin \theta}{\cos ^{2} \theta} \quad \text { identity }: \frac{1}{\cos \theta}=\sec \theta
$$

$$
\frac{2}{\cos ^{2} \theta} \rightarrow \frac{2}{1} \cdot \frac{1}{\cos \theta} \cdot \frac{1}{\cos \theta}
$$

$$
2 \cdot \sec \theta \cdot \sec \theta \rightarrow 2 \sec ^{2} \theta
$$

