Objective: Solve square root equations algebraically.

Concept

A Radical Equation contains a variable within a radical or a variable raised to a non-integer rational exponent.

$$
\sqrt[3]{x^{2}-5}=2
$$

Non-Examples
$\sqrt{x}+9$ (no equal sign)
$x-12=6$ (no radical or non-integer rational exponent)
$(x+4)^{\frac{1}{2}}$ (no equal sign)

Objective: Solve square root equations algebraically.

Concept

Steps to Solve a Radical Equation

1. Isolate the radical expression. If the equation contains more than one radical expression, choose one to isolate.
2. Raise both sides of the equation to the appropriate power so the isolated root and power cancel.
3. Solve the resulting equation. Be aware of whether the equation is linear or quadratic.
4. Check for Extraneous Solutions and then write the final solution set.

Radical equations can have extraneous solutions:

1. Solutions that fail to make the left side and right side of the equation equal.
2. Solutions that are imaginary or create imaginary values when substituted into the original equation.

Objective: Solve square root equations algebraically.
Ex) Solve the equation.
(1) $\sqrt{x}=4$
(2) $(\sqrt{x})^{2}=(4)^{2}$
(3) $x=16$
(4) cheek: $\sqrt{16}=4$
solution: $x=16$

Objective: Solve square root equations algebraically.
Ex) Solve the equation.

$$
\begin{gathered}
\begin{array}{c}
\sqrt{x}-2 \sqrt{3}=0 \\
+2 \sqrt{3} \quad+2 \sqrt{3}
\end{array} \\
\sqrt{x}=2 \sqrt{3}
\end{gathered}
$$

(1)
(2) $(\sqrt{x})^{2}=(2 \sqrt{3})^{2}$
(3)

$$
\begin{aligned}
& x=2^{2} \cdot(\sqrt{3})^{2} \\
& x=4 \cdot 3 \\
& x=12 \\
& k: \begin{array}{l}
\sqrt{12}-2 \sqrt{3}=0 \\
2 \sqrt{3}-2 \sqrt{3}=0 \\
\text { solution: } x=12
\end{array}
\end{aligned}
$$

$$
\text { (4) cheek: } \sqrt{\frac{1}{4} \cdot \sqrt{3}}-2 \sqrt{3}=0
$$

Objective: Solve square root equations algebraically.
Ex) Solve the equation.
(1) $\sqrt{x}=-5$
(2) $(\sqrt{x})^{2}=(-5)^{2}$
(3) $x \Rightarrow 25$
(4) cheek: $\sqrt{25}=-5$

$$
5 \neq-5
$$

no solution or

Objective: Solve square root equations algebraically.
Ex) Solve the equation.

$$
\begin{aligned}
& 4 \sqrt{x}=12 \\
& \sqrt{x}=\frac{12}{4} \\
& \sqrt{x}=3
\end{aligned}
$$

$$
\text { (1) } \frac{4 \cdot \sqrt{x}}{4}=\frac{12}{4}
$$

(2) $(\sqrt{x})^{2}=(3)^{2}$
(3) $x=9$
(4) check: $4 \cdot \sqrt{9}=12$

$$
4 \cdot 3=12
$$

$$
12=12 \sqrt{2}
$$

solution: $x=9$

Objective: Solve square root equations algebraically.
Ex) Solve the equation.
(1) $\begin{aligned} & \sqrt{x}-3=-1 \\ &+3+3\end{aligned}$
(2) $(\sqrt{x})^{2}=(2)^{2}$
(3) $x=4$
(4) check: $\sqrt{4}-3=-1$

$$
\begin{aligned}
2-3 & =-1 \\
-1 & =-1
\end{aligned}
$$

$$
\text { solution: } x=4
$$

Acc Math 3 Solve Square Root Equations Part 1.gwb - Thursday, November 16, 2017 - Page 8 of 9

Objective: Solve square root equations algebraically.
Ex) Solve the equation.
(1)

$$
\begin{gathered}
\frac{\sqrt{x}}{3}-4=1 \\
+4+4 \\
3 \cdot \frac{\sqrt{x}}{31}=5 \cdot 3 \\
\sqrt{x}=15
\end{gathered}
$$

(2) $(\sqrt{x})^{2}=(15)^{2}$
(3) $x=225$
(4) check: $\frac{\sqrt{225}}{3}-4=1$

$$
\begin{aligned}
& \frac{15}{3}-4=1 \\
& 5-4=16
\end{aligned}
$$

solution: $x=225$

Objective: Solve square root equations algebraically.

Closure

A student solved a square root equation. The work is shown. Explain any mistakes you find in the student's procedure and determine the correct solution.

$$
\begin{array}{lc}
\text { solve }: & 2 \sqrt{x}-6=12 \\
\text { step } 1: & \sqrt{x}-6=6 \\
\text { step } 2: & \sqrt{x}=12 \\
\text { step } 3: & x=2 \sqrt{3}
\end{array}
$$

There are two mistakes in the student's procedure. In step 1, the student divided by 2 instead of adding 6 . And in step 3 , the student squared \sqrt{x} but took the square root of $12, \sqrt{12}$. The correct solution is $x=81$.

$$
\begin{array}{lc}
\text { correct procedure } \\
\text { solve: } & 2 \sqrt{x}-6=12 \\
\text { step } 1: & \frac{+6}{}+6 \\
\text { step } 2: & \frac{2 \sqrt{x}}{2}=\frac{18}{2} \\
\text { step } 3: & (\sqrt{x})^{2}=(9)^{2} \\
\text { solution: } & x=81
\end{array}
$$

