Objective: Graph a quadratic function using transformations
$\left.\begin{array}{|c|c|}\hline \text { The Quadratic Function } \\ \hline \frac{\text { vertex form }}{\text { Concept }} \\ f(x)=a(x-h)^{2}+k \\ \text { vertex }:(h, k) & \frac{\text { The Quadratic Function }}{\frac{\text { standard form }}{}} \\ & f(x)=a x^{2}+b x+c \\ & \\ & \text { vertex }=(h, k)=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right.\end{array}\right)$

## One Procedure for Graphing a Parabola from Vertex Form Using Transformations

1. Determine the translations and graph the new vertex.
2. Draw a dashed horizontal line through the new vertex.
3. Perform any reflection, stretch, and/or compression on the other key points in the parent function using the line in step 2 as the reference line.
4. Draw in a smooth curve. Erase the dashed line in step 2.


## Objective: Graph a quadratic function using transformations

Identify each quadratic function as being in Vertex Form or Standard Form. If in Vertex Form, identify the values of $a, h$, and $k$. If in Standard Form, identify the values of $a, b$, and $c$.

$$
\begin{aligned}
& g(x)=-2(x+7)^{2}-5 \\
& g(x)=a(x-h)^{2}+k \\
& \text { Vertex Form } \\
& a=-2, h=-7, k=-5
\end{aligned}
$$

Objective: Graph a quadratic function using transformations
Identify each quadratic function as being in Vertex Form or Standard Form. If in Vertex Form, identify the values of $a, h$, and $k$. If in Standard Form, identify the values of $a, b$, and $c$.

$$
\begin{aligned}
& g(x)=-(x-3)^{2} \\
& g(x)=a(x-h)^{2}+k \\
& \text { Vertex Form } \\
& a=-1, \quad h=3, k=0
\end{aligned}
$$

Objective: Graph a quadratic function using transformations
Identify each quadratic function as being in Vertex Form or Standard Form. If in Vertex Form, identify the values of $a, h$, and $k$. If in Standard Form, identify the values of $a, b$, and $c$.

$$
\begin{aligned}
& g(x)=x^{2}+6 x-10 \\
& g(x)=a x^{2}+b x+c
\end{aligned}
$$

Standard Form

$$
a=1, b=6, c=-10
$$

Objective: Graph a quadratic function using transformations
Identify each quadratic function as being in Vertex Form or Standard Form. If in Vertex Form, identify the values of $a, h$, and $k$. If in Standard Form, identify the values of $a, b$, and $c$.

$$
\begin{aligned}
& g(x)=-\frac{1}{2} x^{2}-2 x \\
& g(x)=a x^{2}+b x+c
\end{aligned}
$$

Standard Form

$$
a=-\frac{1}{2}, b=-2, c=0
$$

Objective: Graph a quadratic function using transformations
Identify each quadratic function as being in Vertex Form or Standard Form. If in Vertex Form, identify the values of $a, h$, and $k$. If in Standard Form, identify the values of $a, b$, and $c$.

$$
g(x)=2 x^{2}-8
$$

$$
\begin{aligned}
& g(x)=2 x^{2}-8 \\
& g(x)=a(x-h)^{2}+k \\
& \text { Vertex Form }
\end{aligned}
$$

$$
g(x)=2 x^{2}-8
$$

$$
g(x)=a x^{2}+b x+c
$$

Standard Form

$$
a=2, b=0, c=-8
$$

Objective: Graph a quadratic function using transformations
Practice) A) Graph each quadratic function using transformations. B) State the vertex and whether it's a maximum or minimum. C) State the zeros or the interval in which a zero is located.

$$
g(x)=-2(x+4)^{2}+3
$$

B) Vertex $(-4,3)$; maximum C) The zeros are in the intervals $[-6,-5]$ and $[-3,-2]$


Objective: Graph Quadratic Functions From Standard Form Using Transformations
Practice) A) Graph each quadratic function using transformations. B) State the vertex and whether it's a maximum or minimum. C) State the zeros or the interval in which a zero is located.

$$
\begin{aligned}
& b(x)=-x^{2}+6 x-8 \\
& \text { 1. } x=\frac{-1 b}{2 a}=\frac{-1(6)}{2(-1)}=\frac{-6}{-2}=3 \\
& y=-1(3)^{2}+6(3)-8 \\
& =-9+18-8 \\
& y=1 \\
& \begin{array}{l}
\text { B) vertex }(3,1), \text { maximum } \\
\text { C) zeros } x=2 \text { and } x=4 .
\end{array}
\end{aligned}
$$



Objective: Graph a quadratic function using transformations
Practice) A) Graph each quadratic function using transformations. B) State the vertex and whether it's a maximum or minimum. C) State the zeros or the interval in which a zero is located.

$$
w(x)=4 x^{2}-4
$$

B) Vertex
$(0,-4)$; minimum
C) The zeros are $x=-1$ and $x=1$.


Objective: Graph Quadratic Functions From Standard Form Using Transformations
Practice) A) Graph each quadratic function using transformations. B) State the vertex and whether it's a maximum or minimum. C) State the zeros or the interval in which a zero is located.

$$
\begin{aligned}
& q(x)=\frac{1}{2} x^{2}-2 x-1 \\
& \text { 1. } x=\frac{-1 b}{2 a}=\frac{-1(-2)}{2\left(\frac{1}{2}\right)}=2 \\
& y=\frac{1}{2}(2)^{2}-2(2)-1 \\
& =2-4-1 \\
& y=-3
\end{aligned}
$$

B) vertex $(2,-3)$, minimum
C) The zeros are in the intervals $[-1,0]$ and $[4,5]$.


## Objective: Graph a quadratic function using transformations

Practice) A) Graph each quadratic function using transformations. B) State the vertex and whether it's a maximum or minimum. C) State the zeros or the interval in which a zero is located.

$$
g(x)=-(x+3)^{2}
$$

B) Vertex
$(-3,0)$; maximum
C) The zeros is $x=-3$.


Objective: Graph Quadratic Functions From Standard Form Using Transformations
Practice) A) Graph each quadratic function using transformations. B) State the vertex and whether it's a maximum or minimum. C) State the zeros or the interval in which a zero is located.

$$
\begin{aligned}
& n(x)=2 x^{2}-8 x+7 \\
& \text { 1. } x=\frac{-1 b}{2 a}=\frac{-1(-8)}{2(2)}=\frac{8}{4}=2 \\
& y=2(2)^{2}-8(2)+7 \\
& \quad=8-16+7 \\
& y=-1
\end{aligned}
$$

B) vertex $(2,-1)$, minimum
C) The zeros are in the intervals $[1,2]$ and $[2,3]$.


