Objective: Factor binomials completely.

## Concept

## To Factor Binomials Completely

1. Factor out any GCF.
2. Determine if the binomial is a difference of two squares. If so, factor into a product of conjugate binomials.

Difference of Two Squares: $(a)^{2}-(b)^{2}$
3. Write the complete product of factors, including any GCF

Objective: Factor binomials completely.
Ex) Factor each binomial completely. If the binomial cannot be factored, write prime.

This binomial is called a difference of two squares. Because the first and last terms are perfect squares and the operation is subtraction (a difference).
(1) $G C F=1$
(2) Diff. of two squares
(3) check by multiplying


Objective: Factor binomials completely.
Ex) Factor each binomial completely. If the binomial cannot be factored, write prime.

$$
3 x^{3}-27 x
$$

(1) GCF $=3 x$
(2) Diff. of two squares
(3) check by mult. the binomials

$$
3 x\left(x^{2}-9\right)
$$

$\operatorname{li}_{3 x}(x+3)(x-3)$


Objective: Factor binomials completely.
Ex) Factor each binomial completely. If the binomial cannot be factored, write prime.

$$
-2 x^{2}+18 x
$$

(1) GCF

$$
=-2 x
$$

(2) not diff. of two

squares
$-2 x(x-9)$

* answer

Objective: Factor binomials completely.
Ex) Factor each binomial completely. If the binomial cannot be factored, write prime.


Objective: Factor binomials completely.
Ex) Factor each binomial completely. If the binomial cannot be factored, write prime.

$$
5 x^{2}+20
$$

$$
\text { (1) } G C F
$$

$$
=5
$$



Objective: Factor binomials completely.
Closure
Three students factored the binomial below. Which student is correct? Explain.

$$
x^{2}+81
$$

| Student A | Student B | Student C |
| :--- | :---: | ---: |
| $(x+9)^{2}$ | prime | $(x+9)(x-9)$ |

Student $B$ is correct because $x^{2}+81$ is a sum of two squares with a GCF of 1 , so it cannot be factored.

## Objective: Factor binomials completely.

Closure
Three students factored the binomial below. Which student is correct? Explain.

$$
2 x^{3}-50 x
$$

$$
\begin{array}{lcc}
\text { Student A } & \text { Student B } & \text { Student C } \\
(x-5)(x+5) & 2 x(x-5)^{2} & 2 x(x-5)(x+5)
\end{array}
$$

Student C is correct. The GCF is $2 x$, giving $2 x\left(x^{2}-25\right)$, and then $x^{2}-25$ is a difference of two squares and can be factored into $(x+5)(x-5)$.

