Objective: Find all complex zeros of a polynomial function.

Concept

Fundamental Theorem of Algebra: Every polynomial equation of degree greater than zero has at least one root in the set of complex numbers. Also, the number of complex roots, including those that repeat, is equal to the degree.

$$
8 x+5=0
$$

Degree $=1$
Number of complex roots = 1

$$
x^{3}-8 x^{2}+5=0
$$

Degree $=3$
Number of complex roots $=3$

$$
8 x^{2}+5=0
$$

Degree $=2$
Number of complex roots $=2$

$$
x^{4}-8 x^{2}+5=0
$$

Degree $=4$
Number of complex roots $=4$

Objective: Find all complex zeros of a polynomial function.

Concept

Complex Conjugate Root Theorem

If P is a polynomial equation in one variable with real coefficients, and $a+b i$ is a root of P, with a and b real numbers, then its complex conjugate $a-b i$ is also a root of P.

For example:
If $3+\sqrt{2}$ is a root, then $3-\sqrt{2}$ is a root.
If $-1-3 i$ is a root, then $-1+3 i$ is a root.
If $-\sqrt{5}$ is a root, then $\sqrt{5}$ is a root.
If $2 i$ is a root, then $-2 i$ is a root.

Objective: Find all complex zeros of a polynomial function.
Ex) For each polynomial function: a) find all complex zeros (include multiplicity), b) identify each zero as rational, irrational, or imaginary. Write all zeros in simplest form.

$$
* \psi \text { zeros } \longleftarrow \quad f(x)=x^{(4)}-18 x^{2}+32
$$

(1) factored $f(x)=\left(x^{2}-16\right)\left(x^{2}-2\right)$ form $f(x)=(x+4)(x-4)\left(x^{2}-2\right)$
(2) zeros

$$
{ }_{0}^{\downarrow}=(x+4)(x-4)\left(x^{2}-2\right)
$$

$$
\text { (a) zero os: }-4,4 ; \text { rational }
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\begin{array}{c}
x+4=0 \\
-4-4
\end{array}, & \begin{array}{l}
x-4=0, \\
+4+4
\end{array} & x=4
\end{array}, \begin{array}{l}
x^{2}-2=0 \\
x=-4
\end{array}, \frac{x^{2}=2}{} \\
& -\sqrt{2}, \sqrt{2} \text {; irrational } \\
& \sqrt{x^{2}}= \pm \sqrt{2} \\
& x=-\sqrt{2}, \sqrt{2}
\end{aligned}
$$

Objective: Find all complex zeros of a polynomial function.
Ex) For each polynomial function: a) find all complex zeros (include multiplicity), b) identify each zero as rational, irrational, or imaginary. Write all zeros in simplest form.

$$
* 4 \text { zeros } \leftarrow g(x)=x^{4}-3 x^{3}+5 x^{2}
$$factored

formzeros

$\left.=\begin{array}{l}x^{2}\left(x^{2}-3 x+5\right) \\ x \cdot x a x^{2}+b x+c=0 \\ \text { or } 9 x^{2}-3 x+5=0\end{array}\right)$

$$
\begin{gathered}
x^{2}=0 \quad \text { or } 4 x^{2}-3 x+5=0 \\
x=0, x=0 \quad \text { use Quadratic Formula }
\end{gathered}
$$

use Quadratic Formula
(a) zeros:
:0,0; rational

$$
x=\frac{-1 b \pm \sqrt{(b)^{2}}}{2 a}
$$

$$
a=1, b=-3, c=5
$$

$$
\begin{aligned}
\frac{3}{2}+\frac{\sqrt{11}}{2} i, & \frac{3}{2}-\frac{\sqrt{11}}{2} i ; \\
& \text { imaginary }
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-1(-3) \pm \sqrt{(-3)^{2}-[4(1)(5)]}}{2(1)} \\
& x=\frac{3 \pm \sqrt{9+-20}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 \pm \sqrt{-11}}{2} \\
& \text { split } \\
& \frac{3}{2}+\frac{\sqrt{-11}}{2}, \frac{3}{2}-\frac{\sqrt{-11}}{2} \\
& \frac{3}{2}+\frac{\sqrt{11}}{2} i, \frac{3}{2}-\frac{\sqrt{11}}{2} i
\end{aligned}
$$

Objective: Find all complex zeros of a polynomial function.
Ex) For each polynomial function: a) find all complex zeros (include multiplicity), b) identify each zero as rational, irrational, or imaginary. Write all zeros in simplest form.

$$
* 4 \cos <\frac{f(x)=x^{4}}{4}-16 \quad 2
$$

(1) factored

$$
\left(\underline{x}^{2}\right)^{2}-(\underline{4})^{2}
$$ form

(2) zeros

$$
0=\left(x^{2}+4\right)\left(x^{2}-4\right)
$$

$$
\begin{array}{lrl}
x^{2}+4=0 & \text { or } & x^{2}-4=0 \\
+4 & & \\
\frac{x^{2}}{}=-4 & \frac{x^{2}}{}=4 \\
\sqrt{x^{2}}= \pm \sqrt{-4} & \sqrt{4} \cdot \sqrt{-1} & \sqrt{x^{2}}= \pm \sqrt{4} \\
x=-2 i, 2 i
\end{array}
$$

(b)
(a) zeros: $-2,2$; rational $-2 i, 2 i$; imaginary

Acc Math 2 Finding All Complex Zeros of Polynomial Functions.gwb - Tuesday, April 24, 2018 - Page 6 of 9

Objective: Find all complex zeros of a polynomial function.
Ex) For each polynomial function: a) find all complex zeros (include multiplicity), b) identify each zero as rational, irrational, or imaginary. Write all zeros in simplest form.

$$
\begin{aligned}
& f(x)=8 x^{3}+27 \\
& (\underline{2 x})^{3}+(\underline{3})^{3}
\end{aligned}
$$

(1) factored

$$
\begin{aligned}
& f(x)=(2 x+3)\left((2 x)^{2}-(2 x)(3)+(3)^{2}\right) \\
& f(x)=(2 x+3)\left(4 x^{2}-6 x+9\right)
\end{aligned}
$$ form

(2) zeros

$$
=(2 x+3)\left(4 x^{2}-6 x+9\right)
$$

$$
\begin{array}{cc}
\text { (a) zeros } & \text { (b) } \\
-\frac{3}{2} ; \text { rational } \\
\frac{3}{4}-\frac{3 \sqrt{3}}{4} i, \frac{3}{4}+\frac{3 \sqrt{3}}{4} i \\
\text { imaginary }
\end{array}
$$

$$
\begin{aligned}
& x=\frac{6 \pm \sqrt{-108}}{8} \quad 4 \frac{4 \sqrt{108}}{\frac{-8}{21}} \\
& \frac{6}{8} \pm \frac{\sqrt{-108}}{8} \sqrt{\sqrt{108} \cdot \sqrt{-1}} \sqrt{\sqrt{27} \cdot \sqrt{9} \cdot \sqrt{3} \cdot \sqrt{-1}} \\
& 2 \cdot 3 \cdot \sqrt{3} \cdot i \\
& \frac{3}{8-4} \pm \frac{3 \sqrt{3}}{84} i
\end{aligned}
$$

$$
\frac{3}{4}-\frac{3 \sqrt{3}}{4} i \frac{3}{4}+\frac{3 \sqrt{3}}{4} i
$$

Objective: Find all complex zeros of a polynomial function.
Ex) For each polynomial function: a) find all complex zeros (include multiplicity), b) identify each zero as rational, irrational, or imaginary. Write all zeros in simplest form.

$$
\text { * } 3 \text { zeros } f(x)=x^{3}+5 x
$$

(1) factored $f(x)=x\left(x^{2}+5\right)$ form \downarrow
(2) zeros $0=x\left(x^{2}+5\right)$
$x=0$ or $x^{2}+5=0$
$-5-5$
(a) zeros: 0; rational

$$
\begin{aligned}
& -\sqrt{5} i, \sqrt{5} i \\
& \quad \text { imaginary }
\end{aligned}
$$

$x^{2}=-5$

$$
\begin{aligned}
& \sqrt{x^{2}}= \pm \sqrt{-5} \\
& \sqrt{5} \cdot \sqrt{-1} \\
& x= \pm \sqrt{5} i
\end{aligned}
$$

Objective: Find all complex zeros of a polynomial function.
Ex) For each polynomial function: a) find all complex zeros (include multiplicity), b) identify each zero as rational, irrational, or imaginary. Write all zeros in simplest form.

$$
f(x)=x^{4}-6 x^{3}-17 x^{2}+102 x
$$

(1) factored $f(x)=x\left(x^{3}-6 x^{2}-17 x+102\right)$
form

$$
\begin{aligned}
& f(x)=x\left(x^{3}-6 x^{2}-17 x+102\right) \\
& f(x)=x(x-6)\left(x^{2}-17\right)
\end{aligned}
$$

(2) zeros

$$
0,6 \text {; rational }
$$

$$
-\sqrt{17}, \sqrt{17} \text {, irrational }
$$

$$
\begin{aligned}
& 0=x(x-6)\left(x^{2}-17\right) \\
& x=0, \quad \begin{array}{r}
x-6=0, \\
\frac{x}{+6+6} \\
x=6
\end{array} \begin{array}{r}
x^{2}=17=0 \\
x^{2}=17 \\
x^{2}= \pm \sqrt{17} \\
x=-\sqrt{17}, \sqrt{17}
\end{array}
\end{aligned}
$$

Objective: Find all complex zeros of a polynomial function.

Closure

Irene found the zeros of the polynomial function below. Her work is shown. What is Irene's error? How would you correct the error and what is the correct answer?

$$
f(x)=x^{4}+5 x^{2}-36
$$

$$
\begin{gathered}
0=x^{4}+5 x^{2}-36 \\
\left(x^{2}-4\right)\left(x^{2}+9\right)=0 \\
(x+2)(x-2)\left(x^{2}+9\right)=0 \\
x+2=0 \quad x-2=0 \quad x^{2}+9=0 \\
x=-2 \quad x=2 \quad x^{2}=9 \\
x
\end{gathered} \quad \begin{aligned}
x & = \pm \sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

Irene's error is that she didn't subtract the 9 . I would correct the error by writing $x= \pm \sqrt{-9}$ which gives $x= \pm 3 i$. The zeros are $-2,2,-3 i$ and $3 i$.

$$
\text { zeros: }-2,2,-3,3
$$

