Objective: Multiply Polynomials of Higher Degree
Concept
Recall the way variable powers are multiplied using the Product of Powers Property: $x^{n} \cdot x^{m}=x^{n+m}$

Ex) Simplify each product. Write the result in standard form.

$$
\begin{gathered}
\quad\left(9 x^{5} y^{4}\right)\left(-5 x^{3} y\right) \\
9 \cdot-5 \cdot x^{5} \cdot x^{3} \cdot y^{4} \cdot y^{\prime} \\
-45 \cdot x^{8} \cdot y^{5} \\
-45 x^{8} y^{5}
\end{gathered}
$$

$$
\begin{aligned}
& -2 x^{2} y^{6} z\left(5 x^{7} z\right) \\
& -2 \cdot 5 \cdot x^{2} \cdot x^{6} \cdot y^{6} \cdot z^{\prime} \cdot \mathbf{z}^{\prime} \\
& -10 \cdot x^{9} \cdot y^{6} \cdot z^{2} \\
& -10 x^{9} y^{6} z^{2}
\end{aligned}
$$

Objective: Multiply Polynomials of Higher Degree
Ex) Simplify each product. Write the result in standard form.

$$
\left(x^{2}-3\right)\left(1-2 x+x^{2}\right)
$$

(1)

$$
\left(x^{2}-3\right)\left(x^{2}-2 x+1\right)
$$

(2)

$$
\begin{aligned}
& x^{2}\left(x^{2}-2 x^{1}+1\right)+-3\left(x^{2}-2 x+1\right) \\
& x^{4}-2 x^{3}+1 x^{2}+-3 x^{2}+6 x-3
\end{aligned}
$$

(3) $x^{4}-2 x^{3}-2 x^{2}+6 x-3$
quartic polynomial"

Objective: Multiply Polynomials of Higher Degree
Ex) Simplify each product. Write the result in standard form.

$$
\left(x^{3}-3 x+1\right)\left(2-x+5 x^{2}\right)
$$

(1) $\quad\left(x^{3}-3 x+1\right)\left(5 x^{2}-x+2\right)$
(2) $x^{3}\left(5 x^{2}-x^{\prime}+2\right)+-3 x^{\prime}\left(5 x^{2}-1 x^{1}+2\right)+1\left(5 x^{2}-x+2\right)$

$$
\begin{aligned}
5 x^{5}-1 x^{4} & +2 x^{3} \\
& -15 x^{3}
\end{aligned}+3 x^{2}-6 x+28+2 x^{2}-1 x+2
$$

(3) $5 x^{5}-x^{4}-13 x^{3}+8 x^{2}-7 x+2$
"quintic polynomial"

Objective: Multiply Polynomials of Higher Degree
Ex) Simplify each product. Write the result in standard form.

$$
(3 x-4 y)\left(2 x^{2}-x y+7 y^{2}\right)
$$

(1)

$$
\begin{aligned}
& 3 x^{\prime}\left(2 x^{2}-1 x^{\prime} y+7 y^{2}\right)+-4 y^{\prime}\left(2 x^{2}-1 x y^{\prime}+\right. \\
& 6 x^{3}-3 x^{2} y+21 x y^{2} \\
& -8 x^{2} y+4 x y^{2}-28 y^{3} \\
& \hline
\end{aligned}
$$

(2)

$$
6 x^{3}-11 x^{2} y+25 x y^{2}-28 y^{3}
$$

Objective: Multiply Polynomials of Higher Degree
Ex) Simplify each product. Write the result in standard form.

Concept Multiplication is a binary operation. This means only two factors can be multiplied at a time.

$$
(3 x-4 y)^{3}
$$

(1) $(3 x-4 y)(3 x-4 y)(3 x-4 y)$

$$
\begin{aligned}
& 9 x^{2}-12 x y \\
& -12 x y+16 y^{2} \\
& \hline
\end{aligned}
$$

$$
(3 x-4 y)\left(9 x^{2}-24 x y+16 y^{2}\right)
$$

$$
\begin{aligned}
& 27 x^{3}-72 x^{2} y+48 x y^{2} \\
&-36 x^{2} y+96 x y^{2}-64 y^{3} \\
& \hline
\end{aligned}
$$

(3) $27 x^{3}-108 x^{2} y+144 x y^{2}-64 y^{3}$

Objective: Multiply Polynomials of Higher Degree

Closure

A student simplified the problem below. Explain the error the student made.

$$
\begin{aligned}
& (x+2)^{3} \\
= & (x)^{3}+(2)^{3} \\
= & x^{3}+8
\end{aligned}
$$

The error is that the student applied the power of a power rule, $\left(x^{n}\right)^{m}=x^{m n}$, instead of multiplying the binomial times itself three times: $(x+2)(x+2)(x+2)$ which would require the distributive property.

