Objective: Find the volume of triangular prisms and cylinders.

Concept

Volume is a measure indicating the amount of space that an object occupies, or the capacity of a container.

The Volume of a Prism is calculated by multiplying the area of the prism's base and the prism's height. This concept can be written as the formula $\boldsymbol{V}=\boldsymbol{B} \cdot \boldsymbol{h}$ where B is the area of the prism's base and \boldsymbol{h} is the prism's height.

The Volume of a Triangular Prism is calculated using the formula $\boldsymbol{V}=\boldsymbol{B} \cdot \boldsymbol{h}$ where \boldsymbol{B} is the area of the prism's triangular base and \boldsymbol{h} is the prism's height.

Triangular Prism

$$
V=B \cdot h
$$

$V=\frac{1}{2} \cdot b \cdot h_{T} \cdot h_{P}$

Objective: Find the volume of triangular prisms and cylinders.
Ex) Find the volume of the tent in cubic yards.

(1) volume prism

$$
V=\underset{\downarrow}{B} \cdot h
$$ base is a triangle

$$
\begin{aligned}
V & =\frac{1}{2} \cdot b \cdot h_{T} \cdot h_{P} \\
V & =\frac{1}{2} \cdot 7 y d \cdot 18 y d \cdot 12 y d \\
& =756 y^{3}
\end{aligned}
$$

(2) The volume of the tent is 756 cubic yards.

Objective: Find the volume of triangular prisms and cylinders.

Concept

A Cylinder is like a prism but with a circular base. The Volume of a Cylinder is calculated by multiplying the area of the cylinder's circular base and the cylinder's height. This concept uses the same general volume formula as prisms: $\boldsymbol{V}=\boldsymbol{B} \cdot \boldsymbol{h}$ where \boldsymbol{B} is the area of the cylinder's base and \boldsymbol{h} is the cylinder's height.

Volume of a Cylinder $=$ area of the circular base \cdot height

$$
V=B \cdot h
$$

$$
V=\pi \cdot r^{2} \cdot h
$$

Objective: Find the volume of triangular prisms and cylinders.
Ex) Estimate the volume of the barrel in cubic inches. Write in terms of π and to the nearest tenth.
(1)
best model is a cylinder

$$
\begin{aligned}
V & =\underset{V}{B} \cdot h \\
V & =\pi \cdot r^{2} \cdot h
\end{aligned}
$$

(3) find radius, r

$$
r=\frac{\text { diameter }}{2}=\frac{30 \mathrm{in}}{2}=15 \mathrm{in}
$$

(2) convert ft to in.
(4) volume

$$
\frac{2 f t}{1} \cdot \frac{12 \mathrm{in}}{18 t}=24 \mathrm{in}
$$

$$
\begin{aligned}
V & =\pi \cdot r^{2} \cdot h \\
V & =\pi \cdot\left(15 \mathrm{in}^{2}\right)^{2} \cdot 24 \mathrm{in} \\
& =\pi \cdot 225 \mathrm{in}^{2} \cdot 24 \mathrm{in} \\
& \approx 16,964 \cdot 6 \mathrm{in}^{3} \\
& =\underbrace{5400 \pi}_{\substack{\text { in terms } \\
\text { of } \pi}} \mathrm{in}^{3}
\end{aligned}
$$

(5) The volume of the barrel is about $16,964.6 \mathrm{in}^{3}$ and is
$5400 \pi \mathrm{in}^{3}$.

Objective: Find the volume of triangular prisms and cylinders.
Practice) Estimate the volume of the log in cubic feet. Write in terms of π and to the nearest tenth.

1. h	$=\frac{45 \mathrm{in}}{1} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=3.75 \mathrm{ft}$
$2 . V$	$=B \cdot h$
V	$=\pi \cdot r^{2} \cdot h$
	$=\pi(2 f t)^{2} \cdot 3.75 \mathrm{ft}$
	$=\pi \cdot 4 \mathrm{ft}^{2} \cdot 3.75 \mathrm{ft}$
	$=15 \pi \mathrm{ft}^{3}$
	$\approx 47.1 \mathrm{ft}^{3}$

The estimated volume of the log is 15π cubic feet, which is about 47.1 cubic feet.

Objective: Find the volume of triangular prisms and cylinders.
B
Ex) Find the volume of the cylindrical can with a base area of $25 \pi \mathrm{in}^{2}$ and a height equal to three times the radius. Write in terms of π and to the nearest tenth.
(1) Volume of cylinder

$$
\begin{aligned}
& V=\frac{B}{L} \cdot h \quad \text { height = 3 radius } \\
& V=\pi \cdot r^{2} \cdot h
\end{aligned}
$$

(2) find radius
(3) find height

$$
\begin{array}{r}
B=\pi r^{2} \\
\frac{25}{\frac{1}{\pi}}=\frac{\frac{1}{\pi} \cdot r^{2}}{\pi_{1}} \\
25=r^{2} \\
\sqrt{25}=\sqrt{r^{2}} \\
r=5 \mathrm{in}
\end{array}
$$

$$
\begin{aligned}
& h=3 \cdot r \\
& h=3 \cdot 5 \mathrm{in}=15 \mathrm{in}
\end{aligned}
$$

(4) volume

$$
\begin{aligned}
V & =\underset{\sim}{B} \cdot h \\
& =25 \pi \mathrm{in}^{2} \cdot 15 \mathrm{in} \\
& =375 \pi \mathrm{in}^{3} \\
& \approx 1178.1 \mathrm{in}^{3}
\end{aligned}
$$

(5) The volume of the cylindrical. can is 375π cubic inches which is about 1178.1 cubic inches.

Objective: Find the volume of triangular prisms and cylinders.
Practice) Mrs. Molina wants to save rain water in a cylindrical container, shown below, to water her plants.
a) Estimate the volume of rain water the container will hold to the nearest cubic foot.

$$
\begin{gathered}
r=1.25 \mathrm{ft}, \quad h=3.25 \mathrm{ft} \\
V=\pi(1.25 \mathrm{ft})^{2}(3.25 \mathrm{ft}) \\
V \approx 16 \mathrm{ft}^{3}
\end{gathered}
$$

b) Estimate the rain water Mrs. Molina saved to the nearest gallon.

Note 1 gallon $=0.134 \mathrm{ft}^{3}$. Convert to gallons:

Mrs. Molina saved about 119 gallons of rainwater.

$$
\begin{aligned}
& \frac{16 \mathrm{ft}^{3}}{1} \cdot \frac{1 \text { gallon }}{0.134 \mathrm{ft}^{3}} \\
& \frac{16}{0.134} \text { gallons } \\
& \approx 119 \text { gallons }
\end{aligned}
$$

Objective: Find the volume of triangular prisms and cylinders.
Closure

Explain in words how to find the volume of any prism .
To find the volume of any prism, multiply the area of the base and the height.

