Objective: Find Coterminal Angles

Concept

Coterminal angles are angles that share the same terminal side.

For example: the angles with measures 257° and -103° are coterminal, as shown.

Since any number of revolutions for an angle of rotation are allowed, given an angle θ, there are an infinite number of angles coterminal with θ. The angles that are coterminal with $\boldsymbol{\theta}$ are written as:
$\theta+360 k^{\circ}$ or $\theta+2 \pi k$, where k is any integer.

Objective: Find Coterminal Angles
Ex) Write an expression that represents all angles coterminal with the given angle.

$$
\begin{gathered}
210^{\circ} \\
=\theta \\
210^{\circ}+360 k^{\circ} \\
\text { where } k \text { is } \\
\text { any integer }
\end{gathered}
$$

$$
\frac{5 \pi}{4}=\theta
$$

$$
\frac{5 \pi}{4}+2 \pi k
$$

$$
\text { where } k \text { is }
$$ any integer

Objective: Find Coterminal Angles
Ex) Find the angles coterminal with the given angle for k values of $-1,1$, and 2 .

225°
 $$
225^{\circ}+360 k^{u}
$$}

$$
\frac{\pi}{3}+2 \pi k
$$

(2) $k=-1$

$$
225^{\circ}+-360^{\circ}
$$

$$
\begin{aligned}
& 350 \\
& 325 \\
& -225
\end{aligned}=-135^{\circ}
$$

$$
\begin{aligned}
& k=-1 \\
& \frac{\frac{\pi}{3}}{}+-2 \pi \\
& \frac{1}{3} \pi+-2 \pi
\end{aligned}
$$

$$
\frac{1}{3} \pi+\frac{-6}{3} \pi
$$

$225^{\circ}+360^{\circ}$
$=585^{\circ}$

$$
=-\frac{5}{3} \pi=-\frac{5 \pi}{3}
$$

(3) $k=1$
(4) $k=2$

$$
\begin{aligned}
225^{\circ}+ & 720^{\circ} \\
& =945^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{3}+2 \pi \\
& \frac{1}{3} \pi+2 \pi=2 \frac{1}{3} \pi \\
&=\frac{7}{3} \pi=\frac{7 \pi}{3}
\end{aligned}
$$

(4) $k=2$

$$
\begin{aligned}
& \frac{\pi}{3}+4 \pi \\
& \frac{1}{3} \pi+4 \pi \\
& =4 \frac{1}{3} \pi=\frac{13}{3} \pi \\
& =\frac{13 \pi}{3}
\end{aligned}
$$

Objective: Find Coterminal Angles
Ex) Find the angle in the first revolution that is coterminal with the given angle. $0 \leq \theta \leq 2 \pi$
$\frac{5 \pi}{2}$

$$
-\frac{5 \pi}{3}
$$

$$
\frac{21 \pi}{4}
$$

$=\frac{5}{2} \pi$
$=2 \frac{1}{2} \pi$

$$
\text { (2) } \frac{-2 \pi}{\frac{1}{2} \pi}
$$

$$
\text { (3) } \frac{\pi}{2}
$$

$$
\text { (1) }-\frac{5}{3} \pi
$$

$$
=-1 \frac{2}{3} \pi
$$

$$
\text { (2) } \frac{+2 \pi}{\frac{1}{3} \pi}
$$

$$
\left(-\frac{5}{3} \pi .+\frac{6}{3} \pi\right)
$$

$$
\text { (1) } 5 \frac{1}{4} \pi
$$

$$
\text { (2) } \frac{-4 \pi}{1 \frac{1}{4} \pi}
$$

$$
\text { (3) } \frac{5 \pi}{4}
$$

Objective: Find Coterminal Angles

Ex) Find the angle in the first revolution that is coterminal with the given angle.
$0^{\circ} \leq \theta<360^{\circ}$

$$
\begin{array}{r}
-580^{\circ} \\
+360^{\circ} \\
\hline-220^{\circ} \\
+360^{\circ} \\
\hline 140^{\circ}
\end{array}
$$

Objective: Find Coterminal Angles
Ex) Draw the angle in standard position.
(1) coterminal angle 480° in the first revolution

$$
\begin{array}{r}
480^{\circ} \\
-\quad 360^{\circ} \\
\hline 120^{\circ}
\end{array}
$$

Objective: Find Coterminal Angles

Ex) Draw the angle in standard position.

$$
\begin{aligned}
& \text { (1) coterminal angle } \\
& \text { in the first } \\
& \text { revolution } \\
& \frac{-29 \pi}{6}=-4 \frac{5}{6} \pi \\
& \text { or } \frac{-29 \pi}{6} \frac{1}{6} \pi \\
& \frac{3 \pi}{6} \pi
\end{aligned}
$$

Objective: Find Coterminal Angles

Closure

Sharon was asked to find the angle in the first revolution that is coterminal with -400°. Her work is shown. Do you agree or disagree with Sharon's answer? Explain your reasoning.
$-400^{\circ}+360^{\circ}=-40^{\circ}$

The angle in the first revolution coterminal with -400° is 40°.

I disagree with Sharon's answer. She should have added another 360° to the -40° to get an angle of 320° for the coterminal angle.

