Objective: Graph square root functions using transformations.

Concept

For square root functions $f(x)=a \sqrt{x-h}+k$ and $g(x)=\sqrt{\frac{1}{b}(x-h)}+k$
the transformations are:
translation h units left or right translation k units up or down
reflection across the x-axis when $a<0$
vertical stretch when $|a|>1 \quad$ vertical compression when $|a|<1$
reflection across the y-axis when $b<0$
horizontal stretch when $|b|>1$
(i.e. if $\frac{1}{\mathrm{~b}}=\frac{1}{2} \rightarrow b=2$)
horizontal compression when $|b|<1$
(i.e. if $\frac{1}{\mathrm{~b}}=2 \rightarrow b=\frac{1}{2}$)

Objective: Graph square root functions using transformations.
Ex) For each function, describe the effect of each parameter on the parent function $f(x)=\sqrt{x}$.

$$
\begin{aligned}
& g(x)=-2 \sqrt{x+3}-1)^{k} \\
& a=-2 \quad \text { x-axis ref. } \\
& |a|=|-2|=2>1 \\
& \begin{array}{l}
\text { vert. stretch } \\
\\
h=-3 \\
k=-1
\end{array} \quad \text { left } 3 \\
& k
\end{aligned}
$$

The effects of the parameters on the parent function $f(x)=\sqrt{x}$ are an x-axis reflection, a vertical stretch by a factor of 2 and a translation left 3 units and down 1 unit.

$$
\begin{gathered}
g(x)=\sqrt{(-3)(x-1)(+2)^{k}} \\
\frac{1}{b} \text { op }=h \\
\frac{1}{b}=-3 \rightarrow \vec{b}=-\frac{1}{3} \\
|b|=\left|-\frac{1}{3}\right|=\frac{y-1}{3}<1 \\
\text { hor comp. } \\
h=1 \text { right } 1 \\
k=2 \text { up } 2
\end{gathered}
$$

The effects of the parameters on the parameters unction $f(x)=\sqrt{x}$ pare a y-axis reflection, a horizontal compression by a factor of $\frac{1}{3}$ and a^{2} translation right 1 unit

Objective: Graph square root functions using transformations.

Concept

To graph square root functions using transformations we must know the graph of the parent function $f(x)=\sqrt{x}$.

x	$f(x)=\sqrt{x}$
0	0
1	1
4	2
9	3

Domain: $\{x \mid x \geq 0\} ;[0, \infty) \quad$ Range: $\{y \mid y \geq 0\} ;[0, \infty)$
End Behavior: as $x \rightarrow+\infty, f(x) \rightarrow+\infty$

Note: End Behavior of a square root function is only described on the end where x goes to positive or negative infinity.

Objective: Graph square root functions using transformations.

Two Procedures to Graph a Square Root Function Using Transformations

One Option:

1. Translate the function horizontally and vertically. The end point $(0,0)$ will not be affected by step 2 .
2. Stretch/Compress and Reflect all points other than the endpoint. For a parameter of a the line of reflection is now the horizontal line containing the translated endpoint. For a parameter of $\frac{1}{b}$ the line of reflection is now the vertical line containing the translated endpoint.

Another Option:

1. Stretch/Compress and Reflect all points (the endpoint $(0,0)$ is not affected.) The line of reflection is the x-axis for a parameter of a, or the y-axis for a parameter of $\frac{1}{b}$.
2. Translate the transformed function horizontally and vertically.

Objective: Graph square root functions using transformations.

Ex) Graph each function using transformations. Describe the domain and range using set and interval notation. Describe the end behavior.

$$
g(x)=-2 \sqrt{x+3}+4
$$

Objective: Graph square root functions using transformations.
Ex) Graph each function using transformations. Describe the domain and range using set and interval notation. Describe the end behavior.

$$
\begin{aligned}
& g(x)=\sqrt{\left.\frac{1}{\frac{1}{3}}\right)(x-1)}-2 \\
& \frac{1}{b}=\frac{1}{3} \rightarrow b=3 \\
& |b|=|3|=3>1 \text { stretch } \\
& h=1 \text { right } \\
& k=-2 \text { down } 2
\end{aligned}
$$

Domain: $\{x \mid x \geq 1\}$ set $[1, \infty)$ introd

Range: $\{y \mid y \geq-2\}$ set

$$
[-2, \infty) \text { interval }
$$

Objective: Graph square root functions using transformations.
Ex) Graph each function using transformations. Describe the domain and range using set and interval notation. Describe the end behavior.

$$
\begin{aligned}
& g(x)=\frac{\sqrt{-2(x+4)}}{\frac{1}{D}}-5 \\
& \frac{1}{b}=-2 \rightarrow b=-\frac{1}{2} \begin{array}{ll}
y \text {-axis } \\
\text { refl. }
\end{array} \\
& |b|=\left|\frac{-1}{2}\right|=\frac{1}{2}<1 \begin{array}{l}
\text { hor. } \\
\text { comp. }
\end{array} \\
& h=-4 \text { left } 4 \\
& k=-5 \text { down } 5 \\
& \text { Domain: }\{x \mid x \leq-4\} \\
& (-\infty,-4] \\
& \text { Range }\{y \mid y \geq-5\} \\
& {[-5, \infty)}
\end{aligned}
$$

end behavior

$$
\text { as } x \rightarrow-\infty, \quad g(x) \rightarrow+\infty
$$

Objective: Graph square root functions using transformations.

Closure

David graphed the function $h(x)=2 \sqrt{x-3}+5$ using transformations. Explain David's error.

David graphed a horizontal stretch by a factor of 2 instead of a vertical stretch by a factor of 2 .

