Objective: Use Vertex Form to Graph and Write Quadratic Functions.

Concept

The parameters of a, h, and k create transformations on $f(x)=x^{2}$ be identified from the vertex form of a quadratic function. Vertex Form of a Quadratic Function	
$\qquad$$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$	
If $a<0$	the graph of the function will have an \boldsymbol{x}-axis reflection
If $\|a\|>1$	the graph of the function will have a vertical stretch by a factor of $\|\boldsymbol{a}\|$
If $\|a\|<1$	the graph of the function will have a vertical compression by a factor of $\|\boldsymbol{a}\|$
If $\boldsymbol{h}>\mathbf{0}$	the graph of the function is translated $\|h\|$ units right
If $\boldsymbol{h}<\mathbf{0}$	the graph of the function is translated $\|h\|$ units left
If $\boldsymbol{k}>\mathbf{0}$	the graph of the function is translated $\|k\|$ units up
If $\boldsymbol{k}<\mathbf{0}$	the graph of the function is translated $\|k\|$ units down

Objective: Use Vertex Form to Graph and Write Quadratic Functions.

Concept

The parent function of the family of quadratic functions is $f(x)=x^{2}$.
This is vertex form where $a=1, h=0$, and $k=0$. The graph of a quadratic function is called a parabola.

x	$f(x)=x^{2}$
-3	$(-3)^{2}=9$
-2	$(-2)^{2}=4$
-1	$(-1)^{2}=1$
0	$(0)^{2}=0$
1	$(1)^{2}=1$
2	$(2)^{2}=4$
3	$(3)^{2}=9$

Objective: Use Vertex Form to Graph and Write Quadratic Functions.
a) Identify the transformations on $f(x)=x^{2}$, b) graph the quadratic function using the transformations.

$$
\begin{aligned}
& \text { Example) } g(x)=-2 x^{2}+5 \\
& g(x)=-2(x-0))^{2}+ \\
& a \quad \text { opp }=h \\
& a=-2<0 \text { refl. } \\
& |a|=|-2|=2>1 \text { vert. etch } \\
& h=0 \text { no horiz. trans. } \\
& k=5 \text { up }
\end{aligned}
$$

a. x-axis reflection

- vertical stretch by
 a factor of 2
- translation up 5 units

Objective: Use Vertex Form to Graph and Write Quadratic Functions.
a) Identify the transformations on $f(x)=x^{2}$, b) graph the quadratic function using the transformations.

Example) $g(x)=\frac{1}{2}(x+3)^{2}$

$$
\begin{aligned}
& \text { Example) } g(x)=\frac{1}{2}(x+3)^{2} \\
& \left.g(x)=\frac{1}{2}(x+3)^{2}\right)^{2}+0^{k}=h=-3 \\
& a=\frac{1}{2}>0 \text { no refl. } \\
& |a|=\left|\frac{1}{2}\right|=\frac{1}{2}<1 \text { vert. comp. } \\
& h=-3 \text { left } \\
& k=0 \text { no vert. trans. }
\end{aligned}
$$

(a) vertical compression by a factor of $\frac{1}{2}$
 translation left 3 units

Objective: Use Vertex Form to Graph and Write Quadratic Functions.

Concept

The parameters of a, h, and k create transformations on $f(x)=x^{2}$ that can be identified from the vertex form of a quadratic function.

Vertex Form of a Quadratic Function
$f(x)=a(x-h)^{2}+k$

If $a<0$	the graph of the function will have an \boldsymbol{x}-axis reflection
If $\|\boldsymbol{a}\|>1$	the graph of the function will have a vertical stretch by a factor of $\|\boldsymbol{a}\|$
If $\|a\|<1$	the graph of the function will have a vertical compression by a factor of $\|\boldsymbol{a}\|$
If $\boldsymbol{h}>\mathbf{0}$	the graph of the function is translated $\|h\|$ units right
If $\boldsymbol{h}<\mathbf{0}$	the graph of the function is translated $\|h\|$ units left
If $\boldsymbol{k}>\mathbf{0}$	the graph of the function is translated $\|k\|$ units up
If $\boldsymbol{k}<\mathbf{0}$	the graph of the function is translated $\|k\|$ units down

Objective: Use Vertex Form to Graph and Write Quadratic Functions.
a) Identify the transformations on $f(x)=x^{2}$, b) graph the quadratic function using the transformations.

$$
\begin{aligned}
& \text { rations. }=h=2 \\
& a \quad \text { opp }= \\
& 5(\sqrt{5})^{2}-3
\end{aligned}
$$

Example) $g(x)=\frac{5}{2}(x-2)^{2}-3$

$$
a=\frac{5}{2}>0 \text { no refl. }
$$

$$
|a|=\left|\frac{5}{2}\right|=\frac{5}{2}>1 \begin{aligned}
& \text { vert } \\
& \text { stretch }
\end{aligned}
$$

$$
h=2 \text { right }
$$

$$
k=-3 \text { down }
$$

(a) -vertical stretch by a factor of $5 / 2$

- translation right 2 units and down 3 units

Objective: Use Vertex Form to Graph and Write Quadratic Functions.
parent/start
Ex) Given the graph of $f(x)=(x+3)^{2}-5$ how does Mary create the graph of $g(x)=(x-1)^{2}+1$?
end here
Strategy: graph the vertex of $f(x)$ and the vertex of $g(x)$, then determine the translation (s) from $f(x)$ to $g(x)$. The vertex of a parabola is at (h, k).
(1) vertex of $f(x)$

$$
\text { is }(-3,-5)
$$

$$
h=-3 \quad k=-5
$$

(2) vertex of $g(x)$ is $(1,1)$

$$
h=1 \quad k=1
$$

Mary can create the graph of $g(x)$ by translating $f(x)$ right 4 units and up 6 units.

Objective: Use Vertex Form to Graph and Write Quadratic Functions.
Ex) Given the graph of $f(x)=(x+2)^{2}+7$ how does Mary create the graph of $g(x)=(x+8)^{2}+2$?
(1) vertex of $f(x)$ is $(-2,7)$

$$
h=-2 \quad k=7
$$

(2) vertex of $g(x)$ is $(-8,2)$

$$
h=-8 \quad k=2
$$

Mary can create $g(x)$ by translating $f(x)$ down 5 units and left 6 units.

Objective: Use Vertex Form to Graph and Write Quadratic Functions.
Ex) Write a quadratic function in the form $f(x)=a(x-h)^{2}+k$ that has the given transformations.

- a reflection over the x-axis \rightarrow a is negative
- a vertical stretch by a factor of $3 \rightarrow a=-3$
- a translation left 4 units and down 7 units

$$
\begin{gathered}
h=-4 \quad k=-7 \\
f(x)=-3(x \in \uparrow+1)^{2} \oplus 7 \\
f(x)=-3(x+4)^{2}-7
\end{gathered}
$$

Objective: Use Vertex Form to Graph and Write Quadratic Functions.
Ex) Write a quadratic function in the form $f(x)=a(x-h)^{2}+k$ that has the given transformations.

- a vertical compression by a factor of $\frac{3}{7} \rightarrow a=\frac{3}{7}$
- a translation right 12 units

$$
\begin{gathered}
h=12 \quad k=0 \\
f(x)=\frac{3}{7}(x-12)^{2}+0 \\
f(x)=\frac{3}{7}(x-12)^{2}
\end{gathered}
$$

Objective: Use Vertex Form to Graph and Write Quadratic Functions.

Closure

Nina is trying to write an equation for the function represented by the graph of a parabola that is a transformation of $f(x)=(x-3)^{2}-1$. The graph has been translated 4 units to the right and 2 units up. Her function is shown below. Explain Nina's error and write the correct function.

$$
g(x)=(x-7)^{2}+2
$$

Nina should have added 2 to the -1 , giving a k value of 1 . The correct function is $g(x)=(x-7)^{2}+1$.

