Concept

The parameters of a, h, and k create transformations on $f(x) = x^2$ that can be identified from the vertex form of a quadratic function.

	Vertex Form of a Quadratic Function $f(x) = a(x - h)^2 + k$
If $a < 0$	the graph of the function will have an x -axis reflection
If $ a > 1$	the graph of the function will have a vertical stretch by a factor of $ a $
If a < 1	the graph of the function will have a vertical compression by a factor of $ a $
If $h > 0$	the graph of the function is translated h units right
If h < 0	the graph of the function is translated h units left
If $k > 0$	the graph of the function is translated k units up

the graph of the function is translated |k| units down

If k < 0

Concept

The parent function of the family of quadratic functions is $f(x) = x^2$. This is vertex form where a = 1, h = 0, and k = 0. The graph of a quadratic function is called a parabola.

x	$f(x) = x^2$
-3	$(-3)^2 = 9$
-2	$(-2)^2 = 4$
-1	$(-1)^2 = 1$
0	$(0)^2 = 0$
1	$(1)^2 = 1$
2	$(2)^2 = 4$
3	$(3)^2 = 9$

a) Identify the transformations on $f(x) = x^2$, b) graph the quadratic function using the transformations.

Example) $g(x) = -2x^2 + 5$ $g(x) = -2(x-6)^2 + 5$ $a \quad opp = h$ $0 = -2 < 0 \quad refl.$

|a|=|-2|=2>1 vertitch

h = 0 no horiz. trans.

k=5 up

Ox-axis reflection

vertical stretch by
a factor of 2

translation up 5 units

a) Identify the transformations on $f(x) = x^2$, b) graph the quadratic function using the transformations.

Example)
$$g(x) = \frac{1}{2}(x+3)^2$$

$$g(x) = \frac{1}{2}(x+3)^2 + 0$$

$$a = \frac{1}{2} > 0$$
 no refl.
 $|a| = |\frac{1}{2}| = \frac{1}{2} < 1$ comp.

Concept

The parameters of a, h, and k create transformations on $f(x) = x^2$ that can be identified from the vertex form of a quadratic function.

		50.002.00 <u>1.</u> 550.002.003.005			
Vertex	410000000000000000000000000000000000000				
MORTON	LORM	$\alpha r \sim r$	11100	LIINO	
VELLER			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
4 -1/-		~ ~ ~	Luuu	 	
	f(x):				

If $a < 0$	the graph of the function will have an x -axis reflection			
If $ a > 1$	the graph of the function will have a vertical stretch by a factor of $ a $			
If a < 1	the graph of the function will have a vertical compression by a factor of $ a $			
If $h > 0$	the graph of the function is translated h units right			
If h < 0	the graph of the function is translated h units left			
If $k > 0$	the graph of the function is translated $ k $ units up			
If <i>k</i> < 0	the graph of the function is translated k units down			

a) Identify the transformations on $f(x) = x^2$, b) graph the quadratic function using the transformations.

Example) $g(x) = \frac{5}{2}(x-2)^2(-3)$

$$a = \frac{5}{2} > 0$$
 no refl

$$\left| a \right| = \left| \frac{5}{2} \right| = \frac{5}{2} > 1$$
 stretch
 $a^{1/2}$
 $b = 2$ right

$$k = -3$$
 down

Overtical stretch by a factor of 2 ·translation right 2 units

and down 3 units

Ex) Given the graph of $f(x) = (x + 3)^2 - 5$ how does Mary create the

graph of $g(x) = (x-1)^2 + 1$?

Strategy: graph the vertex of f(x) and the vertex of g(x), then determine the translation(s) from f(x) to g(x). The vertex of a parabola is at (h, k).

Overtex of f(x)is (-3,-5) h=-3 k=-52) vertex of g(x)is (1,1)

h=1 k=1

Mary can create
the graph of g(x)
by translating f(x)
right 4 units and
up 6 units.

Ex) Given the graph of $f(x) = (x + 2)^2 + 7$ how does Mary create the graph of $g(x) = (x + 8)^2 + 2$?

Overtex of
$$f(x)$$
 is $(-2,7)$
 $h=-2$ $k=7$

② vertex of
$$g(x)$$
 is $(-8,2)$ $h=-8$ $k=2$

Mary can create g(x) by translating f(x) down 5 units and left 6 units.

Ex) Write a quadratic function in the form $f(x) = a(x-h)^2 + k$ that has the given transformations.

- a reflection over the x-axis $\rightarrow a$ is negative a vertical stretch by a factor of $3 \rightarrow a = -3$
- a translation left 4 units and down 7 units

$$f(x) = -3(x - (31))^{2} + 37$$

$$f(x) = -3(x + 4)^{2} - 7$$

Ex) Write a quadratic function in the form $f(x) = a(x - h)^2 + k$ that has the given transformations.

- a vertical compression by a factor of $\frac{3}{7}$ \rightarrow $Q = \frac{3}{7}$
- a translation right 12 units

$$f(x) = \frac{3}{7}(x - 12) + 0$$

$$f(x) = \frac{3}{7}(x - 12)$$

Closure

Nina is trying to write an equation for the function represented by the graph of a parabola that is a transformation of $f(x) = (x-3)^2 - 1$. The graph has been translated 4 units to the right and 2 units up. Her function is shown below. Explain Nina's error and write the correct function.

$$g(x) = (x - 7)^2 + 2$$

Nina should have added 2 to the -1, giving a k value of 1. The correct function is $g(x) = (x - 7)^2 + 1$.

