Objective: Multiply and Divide Rational Expressions.

Concept

To multiply rational expressions, we use the same basic procedure as when multiplying numeric fractions.

To Multiply Two or More Rational Expressions:

1. Factor all numerators and denominators. Including GCFs.
2. Reduce all common factors in the numerator and denominator.
3. Multiply straight across, removing all parentheses. Write the numerator and denominator in standard form.

Objective: Multiply and Divide Rational Expressions.
Ex) Find the product. State any excluded values.

$$
\begin{aligned}
& \frac{3 x^{2}}{x^{2}-2 x-8} \cdot \frac{2 x^{2}-6 x-20}{x^{2}-2 x-15} \\
& (x-4)(x+2) \quad(x-5)(x+3)
\end{aligned}
$$

(a)
excluded values

$$
\begin{aligned}
& \text { excluded values } \\
& x-4=0, x+2=0, \quad x-5=0, x+3=0
\end{aligned}
$$

$$
x \neq-3,-2,4,5
$$

(b)

Objective: Multiply and Divide Rational Expressions.
Ex) Find the product. State any excluded values.

$$
\begin{gathered}
\frac{x^{2}+8 x}{3 x^{2}+15 x} \cdot \frac{6 x+30}{x^{2}+10 x+16} \\
3 x(x+5)(x+8)(x+2)
\end{gathered}
$$

(a)
excluded
values

$$
\begin{aligned}
& \frac{3 x}{3}=\frac{0}{3}, \quad x+5=0, \quad x+8=0, \quad x+2=0 \\
& x \neq 0 \quad x \neq-5 \quad x \neq-8 \quad x \neq-2 \\
& x \neq-8,-5,-2,0
\end{aligned}
$$

(b) product

Objective: Multiply and Divide Rational Expressions.

Concept

Properties of Rational Exponents

For all nonzero real numbers a and b and rational numbers m and n

Words	Numbers	Algebra
Product of Powers Property: to multiply powers with the same base, add the exponents	$12^{\frac{1}{2}} \cdot 12^{\frac{3}{2}}=12^{\frac{1}{2}+\frac{3}{2}}=12^{2}=144$	$a^{m} \cdot a^{n}=a^{m+n}$
Quotient of Powers Property: to divide powers with the same base, subtract the exponents	$\frac{125^{\frac{2}{3}}}{125^{\frac{1}{3}}}=125^{\frac{2}{3}-\frac{1}{3}}=125^{\frac{1}{3}}=5$	$\frac{a^{m}}{a^{n}}=a^{m-n}$ or $\frac{a^{m}}{a^{n}}$
$=\frac{1}{a^{n-m}}$		
Negative Exponent Property: moving a power from numerator to denominator or vice versa changes the sign on the exponent	$36^{-\frac{1}{2}}=\frac{1}{3^{\frac{1}{2}}}=\frac{1}{6}$	$a^{-n}=\frac{1}{a^{n}}$ or $\frac{1}{a^{-n}}=a^{n}$
Zero Exponent Property: any monomial to a power of 0 is equal to 1	$\left(36^{-\frac{1}{2}}=\frac{6}{1}=6\right.$	$(a)^{0}=1$

Acc 3 Multiply and Divide Rational Expressions.GWB - Tuesday, September 11, 2018 - Page 5 of 10

Objective: Multiply and Divide Rational Expressions.
Ex) Find the product. Assume all denominators are not equal to zero.

$$
\frac{\left(-3 x^{-\$} \sqrt{-3}\right)}{\left(-2 x^{2} x^{-4}\right)} \cdot \frac{\left(4 x^{-6} y\right)}{\left(9 x y^{-2}\right)}
$$

(1) neg. exp. rule

(2)

Objective: Multiply and Divide Rational Expressions.

Concept

To divide rational expressions, we use the same basic procedure as when dividing numeric fractions.

To Divide Two Rational Expressions:

1. Rewrite the problem as Multiplication by the Reciprocal.
2. Factor all numerators and denominators. Including GCFs.
3. Reduce all common factors in the numerator and denominator. Don't forget to reduce common factors in the GCFs.
4. Multiply straight across, removing all parentheses. Write the numerator and denominator in standard form.

Objective: Multiply and Divide Rational Expressions.
Ex) Find the quotient. State any excluded values.

$$
\begin{aligned}
& \frac{6 x^{2}+12 x}{3 x-30} \div \frac{2 x^{2}+3 x-2}{x^{2}-10 x} \\
& 3(x-10) \quad x(x-10)
\end{aligned}
$$

a) excluded values (use both denominators and the second numerator)

$$
\begin{gathered}
3 \neq 0 \quad x-10=0 \quad x=0 \quad 2 x-1=0 \\
x \neq 10 \quad x \neq 0 \quad x \neq \frac{1}{2} \quad x \neq-2 \\
x \neq-2,0, \frac{1}{2}, 10
\end{gathered}
$$

(b) (1) Rewrite as multiply by the reciprocal.

$$
\frac{6 x^{2}+12 x}{3(x-10)} \cdot \frac{x(x-10)}{(2 x-1)(x+2)}
$$

$$
\frac{2 \cdot x \cdot x}{2 x-1} \rightarrow \frac{2 x^{2}}{2 x-1}
$$

Objective: Multiply and Divide Rational Expressions.
Ex) (Find the quotient. State any excluded values.

$$
\begin{aligned}
& \text { State any excluded values. }(x+7)(x+ \\
& \frac{x^{2}+14 x+49}{x^{2}} \div \frac{x^{2}+9 x+14}{x^{2}+2 x} \\
& x \cdot x
\end{aligned}
$$

@ excluded values (use both denominators and the second numerator)

$$
\begin{array}{ccc}
x=0 & x+2=0 & x+7=0 \\
x \neq 0 & x \neq-2 & x \neq-7 \\
x \neq-7,-2,0 &
\end{array}
$$

(b) (1) Rewrite as multiply by the reciprocal

Objective: Multiply and Divide Rational Expressions.
Ex) Find the quotient. Assume all denominators are not equal to zero.

$$
\frac{\left(-3 x^{-5} y^{-3}\right)}{\left(-2 x^{2} y^{-4}\right)} \div \frac{\left(4 x^{-6} y\right)}{\left(9 x y^{-2}\right)}
$$

(1) Rewrite as multiply by the reciprocal

(2) neg.
exponent
rule

$$
\begin{aligned}
& \frac{-3 \cdot y^{4}}{-2 \cdot x^{2} \cdot x^{5} \cdot y^{3}} \cdot \frac{9 \cdot x \cdot x^{6}}{4 \cdot y \cdot y^{2}} \\
& \frac{+3 \cdot 9 \cdot x^{1} \cdot x^{6} \cdot y^{4}}{+2 \cdot 4 \cdot x^{2} \cdot x^{5} \cdot y^{3} \cdot y^{\prime} \cdot y^{2}} \\
& \frac{27 x^{(77} \cdot y^{4}}{8 x^{7} \cdot y^{6}} \rightarrow \frac{27 x^{7-7} x^{0}=1}{8 y^{6-4}}
\end{aligned} \underbrace{}_{\frac{27}{8 y^{2}}}
$$

Objective: Multiply and Divide Rational Expressions.

Closure

A set of numbers or expressions is said to be closed, or to have closure, under a given operation if the result of the operation on any two numbers or expressions in the set is also in the set.

The Set of Rational Expressions includes all expressions of the form $\frac{\boldsymbol{p}(\boldsymbol{x})}{\boldsymbol{q}(\boldsymbol{x})}$, where $p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$.

Is the Set of Rational Expressions closed under multiplication?

Yes, because the product of two rational expressions will always be another rational expression.

$$
\frac{p(x)}{q(x)} \cdot \frac{r(x)}{s(x)}=\frac{p(x) r(x)}{q(x) s(x)}
$$

Is the Set of Rational Expressions closed under division?

Yes, because the quotient of two rational expressions will always be another rational expression.

$$
\frac{p(x)}{q(x)} \div \frac{r(x)}{s(x)}=\frac{p(x) s(x)}{q(x) r(x)}
$$

