Objective: Graph polynomial functions from factored form
Concept

Polynomial Functions and End Behavior

The end behavior of a polynomial function is determined by two characteristics.

1. The degree (the highest power of the independent variable) of the function: even or odd
2. The sign of the leading coefficient (the constant factor, a, of the first term when the function is written in standard form): positive or negative

Objective: Graph polynomial functions from factored form
Concept

Odd Degree $\left(x, x^{3}, x^{5}\right)$ Polynomial Functions

Positive Leading Coefficient

End Behavior
as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
as $x \rightarrow+\infty, f(x) \rightarrow+\infty$
$f(x)=2 x^{3}-4 x^{2}$

End Behavior as $x \rightarrow-\infty, f(x) \rightarrow+\infty$ as $x \rightarrow+\infty, f(x) \rightarrow-\infty$
$f(x)=-2 x^{3}+4 x^{2}$

Objective: Graph polynomial functions from factored form
Concept
Even Degree $\left(x^{2}, x^{4}, x^{6}\right)$ Polynomial Functions

End Behavior as $x \rightarrow-\infty, f(x) \rightarrow+\infty$ as $x \rightarrow+\infty, f(x) \rightarrow+\infty$

$$
f(x)=3 x^{4}+x^{3}-2 x^{2}
$$

Negative Leading Coefficient

End Behavior

$$
\begin{aligned}
& \text { as } x \rightarrow-\infty, f(x) \rightarrow-\infty \\
& \text { as } x \rightarrow+\infty, f(x) \rightarrow \pm \infty
\end{aligned}
$$

$$
f(x)=-3 x^{4}-x^{3}+2 x^{2}
$$

Objective: Graph polynomial functions from factored form

Concept

Steps to Graph a Polynomial Function from Factored Form

$$
\text { ex) } x, 1,2 x, x^{2}
$$

1. Find the first term. Multiply any monomial factor and all variable terms from all other factors. $(3 x+4)$
2. Determine the end behavior using the first term.
3. Find the zeros of the function. (Include multiplicity)
4. Sketch a smooth curve.

Objective: Graph polynomial functions from factored form
Ex) For each polynomial function: a) state the end behavior, b) state the values of the real zeros (include multiplicity), c) sketch the graph.

$$
f(x)=\underline{x}(\underline{x}-4)(1-x)
$$

(1) find the first term

$$
\begin{gathered}
x \cdot x \cdot-1 x=-13^{3} \text { is }{ }^{\text {negative }}
\end{gathered}
$$

(a) end behavior

$$
\begin{aligned}
& \text { as } x \rightarrow-\infty, f(x) \rightarrow+\infty \\
& \text { as } x \rightarrow+\infty, f(x) \rightarrow-\infty
\end{aligned}
$$

(3) find the zeros

$$
\begin{aligned}
& 0=x(x-4)(1-x) \\
& x=0, \quad x-4=0,1-x=0 \\
& +4+4, \quad+x+x \\
& x=4,
\end{aligned}
$$

Objective: Graph polynomial functions from factored form
Ex) For each polynomial function: a) state the end behavior, b) state the values of the real zeros (include multiplicity), c) sketch the graph.

$$
\begin{aligned}
& f(x)=(x+5)^{2}(3 x-2)(2 x+3) \\
& \text { or } \\
& f(x)=1(\underline{x}+5)(\underline{x}+5)(3 x-2)(\underline{2 x}+3)
\end{aligned}
$$

(1) find the first term
find the zeros $0=(x+5)(x+5)(3 x-2)(2 x+3)$

Objective: Graph polynomial functions from factored form
Ex) For each polynomial function: a) state the end behavior, b) state the values of the real zeros (include multiplicity), c) sketch the graph.

$$
f(x)=\left(x^{2}-20\right)\left(9-x^{2}\right)
$$find the first term

(a) end behavior
as $x \rightarrow-\infty, f(x) \rightarrow{ }^{p}-\infty$
as $x \rightarrow+\infty, f(x) \rightarrow+\infty$find the zeros
$0=\left(x^{2}-20\right)\left(9-x^{2}\right)$

$0=\left(x^{2}-20\right)(3-x)(3+x)$
(b) $2 \operatorname{ceros}=$ $\begin{array}{lll}x^{2}-20=0 & 3-x=0 & 3+x=0 \\ +20+20 & +x+x & -3\end{array} \quad \frac{-2 \sqrt{5},-3,3,2 \sqrt{5}}{(n u \text { multiplicity) }}$

$$
\begin{aligned}
& x^{2}=20 \\
& \sqrt{x^{2}}= \pm \sqrt{20} \\
& x= \pm 2 \sqrt{5} \\
&
\end{aligned}
$$

