Objective: Model situations with factors of polynomials and use them to solve problems.

Ex) The area of a rectangular wheat field can be modeled by $15 x^{2}-2 x-24$ square meters.
a) Find the expressions of x that could represent the dimensions of
b) If the value of x is 20 , what the field. length a width

$$
\text { Area }=\text { length } \cdot \text { wid th }
$$

\square are the dimensions of the field?

$$
15 \times x+1
$$

$$
\begin{aligned}
& \text { are the dimensions of the field? } \\
& \begin{array}{c}
(3 x-4) \text { meters } \\
\begin{array}{c}
3(20)-4 \\
60-4 \\
56
\end{array}\left\{\begin{array}{l}
5(20)+6) \text { meters } \\
5(20)+6 \\
10+6 \\
106 \text { meters }
\end{array}\right.
\end{array} \begin{array}{l}
\text { met }
\end{array}
\end{aligned}
$$

$$
15 x^{2}-2 x-24=(3 x-4)(5 x+6)
$$

$$
(3 x-4)(5 x+6) \int
$$

conclusion: The dimensions The dimensions of
the field, if $x=20$,
are 56 meters and
106 meters. of the field can be represented by $(3 x-4)$ meters and $(5 x+6)$ meters.

Objective: Model situations with factors of polynomials and use them to solve problems.

Ex) The volume of a shipping box is modeled by $2 x^{3}-7 x^{2}-4 x$ cubic inches.
a) Find the expressions of x that could represent the length, width, and height of the box.

$$
\begin{aligned}
& \text { in }^{3}=\text { in } \cdot \text { in } \cdot \text { in } \\
& \text { olume }=\text { length } \text { width } \cdot \text { height }
\end{aligned}
$$

$$
2 x^{3}-7 x^{2}-4 x=x(2 x+1)(x-4)
$$

$$
\left.\begin{array}{l}
x\left(2 x^{2}-7 x-4\right) \\
x(2 x+1)(x-4)
\end{array}\right\}
$$

conclusion
The length, width, and height of the shipping box can be represented by x inches, $(2 x+1)$ inches, and $(x-4)$ inches.
b) If the value of x is 15 , what are the dimensions of the box?
rectangular prism

$$
\begin{aligned}
& x \text { in } \rightarrow 15 \text { in } \\
& (2 x+1) \text { in } \rightarrow 31 \text { in } \\
& 2.15+1 \\
& (x-4) \text { in } \rightarrow 11 \text { in } \\
& 15-4
\end{aligned}
$$

The dimensions of the shipping box, if $x=15$, are $15 \mathrm{in}, 31 \mathrm{in}$, and 11 in .

Objective: Model situations with factors of polynomials and use them to solve problems.
Practice) The volume of a rectangular storage shed is modeled by the polynomial $2 x^{3}+9 x^{2}-35 x$ cubic feet.
a) Write expressions of x that could be used to represent the dimensions of the shed.

$$
V=I \cdot w \cdot h
$$

The dimensions of the shed can be represented by x feet, $(2 x-5)$ feet, and $(x+7)$ feet.
$V=2 x^{3}+9 x^{2}-35 x$
$=x\left(2 x^{2}+9 x-35\right)$
$=x(2 x-5)(x+7)$

b) If $x=10$, what are the dimensions of the shed?
$x=10$
10 ft
$(2(10)-5)=20-5=15 \mathrm{ft}$
$((10)+7)=17 \mathrm{ft} \quad$ If $x=10$, the dimensions of the shed are $10 \mathrm{ft}, 15 \mathrm{ft}$, and 17 ft .
c) Penny is planning on renting a storage shed. She's determined that she needs a storage volume of 2000 cubic feet. Is this storage shed large enough to meet Penny's needs? Explain your reasoning. $V=/ \cdot w \cdot h=10 \mathrm{ft} \cdot 15 \mathrm{ft} \cdot 17 \mathrm{ft}=2550 \mathrm{ft}^{3}$

Yes, the storage shed is large enough because its volume is 2550 cubic feet, which is 550 cubic feet larger than Penny needs.

Objective: Model situations with factors of polynomials and use them to solve problems.
Practice) A circular fountain is set within a square flower garden as shown.
The area of the flower garden is $16 x^{2}+24 x+9$ square feet.
a) Write expressions of x to model the sides of the flower garden.

$$
\begin{aligned}
A & =/ \cdot w \\
A & =16 x^{2}+24 x+9 \\
& =(4 x+3)(4 x+3)
\end{aligned}
$$

The sides of the flower garden can be modeled by $(4 x+3)$ feet and $(4 x+3)$ feet.
b) What is the diameter of the fountain as an expression of x ? diameter $=$ side length - garden on edges
$(4 x+3) f t-4 f t=(4 x-1) f t$
The diameter of the fountain is $(4 x-1)$ feet.
c) If $x=3$, what is the diameter of the fountain? diameter $=4(3)-1 \mathrm{ft}=12-1=11 \mathrm{ft}$ If $x=3$, the diameter of the fountain is 11 feet.
d) If $x=3$, what is the perimeter of the
flower garden?
one side $=4 x+3 f t$
one side $=4(3)+3=12+3=15 \mathrm{ft}$
A square has four equal sides. Perimeter $=4 \cdot 15 \mathrm{ft}=60 \mathrm{ft}$ If $x=3$, the perimeter of the flower garden is 60 feet.

