Objective: Model Real World Situations with Polynomials

Ex) The data from the U.S. Census Bureau for 2005-2009 shows that the number of male students (in thousands) enrolled in high school in the United States can be modeled by the function $M(x)=-10.4 x^{3}+74 x^{2}-3.4 x+8320.2$, where x is the number of years after 2005. The number of female students (in thousands) enrolled in high school in the United States can be modeled by the function $F(x)=-13.8 x^{3}+55.3 x^{2}+141 x+7880$, where x is the number of years after 2005 .
a) Write a new function, $T(x)$, that models the total number of students in
thousands after 2005. $T(x)=M(x)+F(x)$

$$
\begin{aligned}
& M(x)=-10.4 x^{3}+74 x^{2}-3.4 x+8320.2 \\
&+F(x)=-13.8 x^{3}+55.3 x^{2}+141 x+7880 \\
& \hline T T(x)=-24.2 x^{3}+129.3 x^{2}+137.6 x+16.200 .2
\end{aligned}
$$

b) Estimate the total number of students enrolled in high school in the United

States in 2009. $x=2009-2005$

$$
x=4
$$

$$
\begin{aligned}
T(4)= & -24.2(4)^{3}+129.3(4)^{2}+137.6(4)+16,200.2 \\
& \times 1000 \\
= & 17,270,600
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { conclusion } \\
17,270,600 \text { students enrolled } \\
\text { in high school in the United } \\
\text { States. }
\end{array}\right]
$$

Objective: Model Real World Situations with Polynomials
Ex) From 1995 through 2010, the yearly gross revenue (in millions) for a candy company can be modeled by the function $R(t)=0.01 t^{3}-0.2677 t^{2}+$ $1.7779 t+2.1805$ and the yearly cost (in millions) can be modeled by the function $C(t)=0.0008 t^{3}-0.0096 t^{2}+0.0288 t+2.4$ where t is the number of years since 1995.
a. Write a new function, $P(t)$, that models the yearly profit after 1995.

$$
\begin{gathered}
P(t)=R(t)-C(t) \quad \text { profit }=\text { revenue }- \text { costs } \\
P(t)=\left(0.01 t^{3}-0.2677 t^{2}+1.7779 t+2.1805\right) \\
+\left(-0.0008 t^{3}+0.0096 t^{2} \mp 0.0288 t+2.4\right) \\
P(t)=0.0092 t^{3}-0.2581 t^{2}+1.7491 t-0.2195
\end{gathered}
$$

b. What was the total profit the candy company had in 2007?

$$
\begin{aligned}
& \begin{aligned}
P(12) & =0.0092(12)^{3}-0.2581(12)^{2}+1.7491(12)-0.2195 \\
& =12
\end{aligned} \\
& \times 1,000,000 \\
& \\
&
\end{aligned} \begin{aligned}
\$-499,100 \text { (loss of } \$ 499,100)
\end{aligned}
$$

conclusion
In 2007 the candy company had a loss of $\$ 499,100$.

Objective: Model Real World Situations with Polynomials
Ex) A straight section of a biking path has a width, in feet, modeled by the function $W(x)=2 x+7$ and a length, in feet, modeled by the function $L(x)=x^{3}+4 x^{2}+5 x-6$.
a) Write a new function, $P(x)$, that represents the perimeter of the bike path section.
$=2 x^{3}+8 x^{2}+10 x-12+4 x+14$
$P(x)=2 x^{3}+8 x^{2}+14 x+2$

b) Find the perimeter of the described section of the biking path if the width is 17 feet.
width

$$
\begin{aligned}
& \text { width } \\
& w(x) \\
& w(1)
\end{aligned}=2 x+7
$$

$$
\frac{1_{-7}^{17}=2 x+7}{\frac{10}{2}}=\frac{2 x}{2}
$$

$$
x=5
$$

```
(2) \(P(5)=2(5)^{3}+8(5)^{2}+14(5)+2\)
    \(=522\) feet
(3) \(\left[\begin{array}{l}\text { The section of the biking path } \\ \text { has a perimeter of } 522 \text { feet. }\end{array}\right.\)
```

Objective: Model Real World Situations with Polynomials
Ex) A farmer has a field he needs to mow before he can plant wheat. The length of the field can be modeled by $L(x)=5 x^{3}+2 x^{2}+7$ feet and the width of the field can be modeled by $W(x)=3 x^{2}-4 x+2$ feet.
a) Write a function, $A(x)$, that models the area of the field.

$$
\begin{aligned}
& A(x)=L(x) \cdot W(x) \\
& A(x)=\left(5 x^{3}+2 x^{2}+7\right)\left(3 x^{2}-4 x+2\right) \quad \text { field } \\
& =5 x^{3}\left(3 x^{2}-4 x^{\prime}+2\right)+2 x^{2}\left(3 x^{2}-4 x^{\prime}+2\right)+7\left(3 x^{2}=l \cdot \mathbf{l}+2\right) \\
& =15 x^{5}-20 x^{4}+10 x^{3}+6 x^{4}-8 x^{3}+4 x^{2}+21 x^{2}-28 x+14 \\
& 15 x^{5}-14 x^{4}+2 x^{3}+25 x^{2}-28 x+14
\end{aligned}
$$

b) The farmer can mow the field at a rate of 1000 square feet per minute. If the value of x is 8 , how long, to the nearest hour, will it take the farmer to mow the field?

$$
\begin{aligned}
x=8 \quad(1) \quad A(8) & =15(8)^{5}-14(8)^{4}+2(8)^{3}+25(8)^{2}-28(8)+14 \\
& =436,590 \mathrm{ft}^{2}
\end{aligned}
$$

(2) $\frac{436,590 \mathrm{ft}^{2}}{1} \cdot \frac{1 \mathrm{mitr}}{1000 \mathrm{ft}^{2}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
≈ 7 hours
(3) It will take the farmer about 7 hours to mow the field.

