Objective: Write a polynomial function of least degree given the complex roots.

Concept

Complex Conjugate Root Theorem

If P is a polynomial equation in one variable with real coefficients, and $a+b i$ is a root of P, with a and b real numbers, then its complex conjugate $a-b i$ is also a root of P. Also, if $a+\sqrt{b}$ is a root, so is its conjugate $a-\sqrt{b}$.

For example:

$$
\begin{aligned}
& \text { If } 3+\sqrt{2} \text { is a root, then } 3-\sqrt{2} \text { is a root. } \\
& \text { If }-1-3 i \text { is a root, then }-1+3 i \text { is a root. } \\
& \text { If }-\sqrt{5} \text { is a root, then } \sqrt{5} \text { is a root. } \\
& \text { If } 2 i \text { is a root, then }-2 i \text { is a root. }
\end{aligned}
$$

Objective: Write a polynomial function of least degree given the complex roots.
Concept

Steps to write a polynomial function using the given roots.

1. Determine any missing irrational or imaginary roots using the Complex Conjugate Root Theorem.
2. Find the factors related to each root.
3. Multiply the factors together to write the function $p(x)$ in standard form.

Objective: Write a polynomial function of least degree given the complex roots.

Ex) Write a polynomial function, $p(x)$, of least degree in standard form using the given roots.

$$
\begin{gathered}
\text { roots: } \sqrt{2},-4 i \\
\text { irrational }
\end{gathered}
$$

(1) find missing roots/zeros

- have $\sqrt{2} \rightarrow$ also have $-\sqrt{2}{ }_{*}^{*} 4 i$ roots/reros - have " $-4 i \rightarrow$ also have
(2) find the factors
factored form

(4) multiply
$x^{2}+x \sqrt{2} \cong=x \sqrt{2}-\sqrt{4}$
$\begin{aligned} x^{2}=4 x \tau+4 x i & -16 i \\ -16 & (-1)\end{aligned}$
the factors
$\left(x^{2}-2\right)$ $\left(x^{2}+16\right)$

standard

$$
p(x)=x^{4}+14 x^{2}-32
$$

Objective: Write a polynomial function of least degree given the complex roots.
Ex) Write a polynomial function, $p(x)$, of least degree in standard form using the given roots.

$$
\text { roots: }-6,5 \text {, and } \frac{3}{5} \quad \text { \# all rational } \begin{array}{r}
\text { roots }
\end{array}
$$find missing roots/zeros * no missing rootsfind the factors

$$
x+6=
$$

factor

(3) factored form

$$
p(x)=(x+6)(x-5)(5 x-3)
$$

(4) multiply
the factors

Captured on Wed Apr 252018 13:20:48

Objective: Write a polynomial function of least degree given the complex roots.
Closure
If one root of a fourth degree polynomial function is rational, what must be true about the other three roots?

One of the other three roots must also be rational. The other two roots could be rational or either irrational conjugates or imaginary conjugates.

