Objective: Write a quadratic function in vertex form by completing the square.

Concept

A perfect square trinomial is a trinomial that can be factored into a binomial squared.

Examples

$$
\begin{gathered}
x^{2}-4 x+4=(x-2)^{2} \\
x^{2}+10 x+25=(x+5)^{2}
\end{gathered}
$$

Non-Examples

$$
\begin{aligned}
& x^{2}-4 x+3=(x-3)(x-1) \\
& x^{2}+10 x+16=(x+2)(x+8)
\end{aligned}
$$

Vertex Form of a Quadratic Function contains a perfect square trinomial in factored form.

$$
\begin{gathered}
\text { Vertex Form: } f(x)=a(x-h)^{2}+k \\
f(x)=-2(x-2)^{2}+5 \\
f(x)=3(x+1)^{2}-6
\end{gathered}
$$

In order to rewrite standard form, $f(x)=a x^{2}+b x+c$ in vertex form, $f(x)=a(x-h)^{2}+k$, we must learn how to create a perfect square trinomial.

Objective: Write a quadratic function in vertex form by completing the square.

Concept

Consider the two perfect square trinomials below. What is a mathematical relationship between the values of b and c in both trinomials? In other words, how could you use the value of b to get the value of c ?

$$
x^{2}+10 x+25 \quad x^{2}-4 x+4
$$

I could take the value of b, divide it by 2 , and then square the number to find c.

$$
\left(\frac{10}{2}\right)^{2}=25 \quad\left(\frac{-4}{2}\right)^{2}=4
$$

Objective: Write a quadratic function in vertex form by completing the square.

Concept

Rewrite the trinomial $x^{2}+6 x+10$ in the form $(x+3)^{2}+$ \qquad .

Rewrite the trinomial $x^{2}-8 x-3$ in the form $(x+-4)^{2}+-19$.

Objective: Write a quadratic function in vertex form by completing the square.

Concept

> Steps to Create Vertex Form, $f(x)=a(x-h)^{2}+k$, from Standard Form, $f(x)=a x^{2}+b x+c$, by Completing the Square

1. Move the constant term to the function side:

$$
f(x)=a x^{2}+b x+c \rightarrow f(x)-c=a x^{2}+b x
$$

2. Factor out the value of $\boldsymbol{a}: f(x)-c=a x^{2}+b x \rightarrow f(x)-c=a\left(x^{2}+d x\right)$
3. Create a perfect square trinomial. Make sure you balance the equation by adding to both sides.

$$
f(x)-c=a\left(x^{2}+d x\right) \rightarrow f(x)-c+a\left(\frac{d}{2}\right)^{2}=a\left(x^{2}+d x+\left(\frac{d}{2}\right)^{2}\right)
$$

4. Simplify the left side and write the perfect square trinomial as a binomial squared: $f(x)-k=a(x-h)^{2}$
5. Write the function in vertex form: $f(x)=a(x-h)^{2}+k$

Objective: Write a quadratic function in vertex form by completing the square.
Ex) Write each quadratic function in vertex form. Then identify the vertex and if it is a maximum or minimum.

Objective: Write a quadratic function in vertex form by completing the square.
Ex) Write each quadratic function in vertex form. Then identify the vertex and if it is a maximum or minimum.

Objective: Write a quadratic function in vertex form by completing the square.
Ex) Write each quadratic function in vertex form. Then identify the vertex and if it is a maximum or minimum.

$$
\begin{aligned}
& f(x)=x^{2}-10 x-8 \\
& \text { (1) } \frac{+8}{f(x)+8=1 x^{2}-10 x} \\
& \text { (2) } \\
& \text { factor } f(x)+8=1\left(x^{2}-10 x\right) \\
& \text { out a } \\
& \text { (3) } f(x)+8+\frac{25}{25.1}\left(x^{2}-10 x+\frac{25}{\left(-\frac{10}{2}\right)^{2}}(x-5)(x-5)\right. \\
& (-5)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) } \begin{array}{l}
f(x)+33=1(x-5)^{2} \\
-33 \\
f(x)=(x-5)^{2}-33 \text { vertex } \\
\text { form } \\
\text { vertex }(5,-33) \text {; minimum }
\end{array},
\end{aligned}
$$

Objective: Write a quadratic function in vertex form by completing the square.

Closure

Michelle rewrote the standard form of a quadratic function in vertex form. Her work is shown. What error did Michelle make? If you fix her mistake, what is the correct vertex form?

$$
\begin{array}{ll}
\text { standard form: } & f(x)=2 x^{2}-16 x-8 \\
\text { step } 1: & f(x)+8=2 x^{2}-16 x \\
\text { step } 2: & f(x)+8=2\left(x^{2}-16 x\right) \\
\text { step } 3: & f(x)+8+128=2\left(x^{2}-16 x+64\right) \\
\text { step } 4: & f(x)+136=2(x-8)^{2} \\
\text { vertex form }: & f(x)=2(x-8)^{2}-136
\end{array}
$$

Michelle's error is that she forgot to factor 2 out of 16 , making the new number an 8 . If I fix her mistake, the correct vertex form is $f(x)=2(x-4)^{2}-40$.

