Objective: Identify and Graph Exponential Growth and Decay Functions

## Concept

To identify an exponential function, $f(x)=a(b)^{c(x-h)}+k$, as growth or decay you should consider the function when it is in the form where the coefficient of $\boldsymbol{x}$ is positive. Then, if the base, $\underline{b}$, is greater than 1 , the function is exponential growth, and if the base, $b$, is between 0 and 1 , the function is exponential decay.

In some exponential functions, especially those that model real-world situations, looking at the base alone can lead to a misinterpretation of the model.

For example: $\boldsymbol{r}(\boldsymbol{h})=\mathbf{3}(\mathbf{2 . 4})^{-h}$ is exponential decay because the negative exponent means the base value is really $\frac{1}{2.4}$, which is $\frac{5}{12}$, a value between 0 and 1 . The model can be rewritten as $\boldsymbol{r}(\boldsymbol{h})=\mathbf{3}\left(\frac{\mathbf{5}}{\mathbf{1 2}}\right)^{\boldsymbol{h}}$, and from this form the true base value is shown.

Objective: Identify and Graph Exponential Growth and Decay Functions
Ex) Identify each function as exponential growth or exponential decay. Identify the base.

$$
\begin{array}{c|c}
f(x)=4\left(\frac{1}{3}\right)^{-x+4}-2 & g(x)=7\left(\frac{1}{2}\right)^{x}-6 \\
f(x)=4\left(\frac{1}{3}\right)^{-1 /(x-4)}-2 & 0<\frac{1}{2}<1 \\
f(x)=4\left(\frac{3}{L}\right)^{x-4}-2 & \begin{array}{l}
\text { base }=\frac{1}{2} \\
3>1
\end{array} \\
\begin{array}{ll}
\text { exponential decay }
\end{array} \\
\begin{array}{l}
\text { base }=3 \\
\text { exponential growth }
\end{array} &
\end{array}
$$

$$
\begin{gathered}
h(x)=4^{-x}+5 \\
h(x)=4^{-7}+5 \\
h(x)=\left(\frac{1}{4}\right)^{x}+5 \\
0<\frac{1}{4}<1 \\
\text { base }=\frac{1}{4} \\
\text { exponential decay }
\end{gathered}
$$

Objective: Identify and Graph Exponential Growth and Decay Functions
Practice) A) Identify the function as exponential growth or decay. B) Graph the function. C) State the $y$-intercept and zero, if they exist.

$$
\begin{aligned}
& g(x)=\left(\frac{1}{2}\right)^{x-3}+2 \\
& 0<\frac{1}{2}<1 \quad \text { parent } \\
& a=1 \text { none } \quad f(x)=\left(\frac{1}{2}\right)^{x} \\
& a=3 \text { right } 3 \\
& h=2 \text { up } 2
\end{aligned}
$$

A)
exponential decay
C) $y$-intercept

zero $\qquad$ none

$$
g(0)=\left(\frac{1}{2}\right)^{0-3}+2
$$

$$
=\left(\frac{1}{2}\right)^{-3}+2
$$

$$
=2^{3}+2=8+2=10
$$

Objective: Identify and Graph Exponential Growth and Decay Functions
Practice) A) Identify the function as exponential growth or decay. B) Graph the function. C) State the $y$-intercept and zero, if they exist.

$$
\begin{gathered}
g(x)=2^{-x-4}-1 \\
g(x)=\left(\frac{1}{2}\right)^{x+4}-1
\end{gathered}
$$

A) Exponential Decay
C) $y$-intercept $\left(0,-\frac{15}{16}\right)$ zero $\qquad$
C) y -intercept
$g(x)=\left(\frac{1}{2}\right)^{x+4}-1$
$g(0)=\left(\frac{1}{2}\right)^{0+4}-1$
$=\left(\frac{1}{2}\right)^{4}-1$
$=\frac{1}{16}+-1=\frac{1}{16}+\frac{-16}{16}=\frac{-15}{16}$


Objective: Identify and Graph Exponential Growth and Decay Functions
Practice) A) Identify the function as exponential growth or decay. B) Graph the function. C) State the $y$-intercept and zero, if they exist.

$$
g(x)=-2^{x}+4
$$

$$
g(x)=-1(2)^{x}+4
$$

A) Exponential Growth
C) $y$-intercept $(0,3)$ zero $\quad 2$


Objective: Identify and Graph Exponential Growth and Decay Functions
Practice) A) Identify the function as exponential growth or decay. B) Graph the function. C) State the $y$-intercept and zero, if they exist.

$$
\begin{gathered}
g(x)=0.5^{-(x-2)} \\
g(x)=(2)^{x-2}
\end{gathered}
$$

A) Exponential Growth
C) $y$-intercept $\left(0, \frac{1}{4}\right)$
zero $\qquad$


Objective: Identify and Graph Exponential Growth and Decay Functions

## Closure

Will an exponential function always have a $y$-intercept? Explain.

Yes, since the domain of an exponential function is the set of all real numbers, the $x$ value of 0 will always produce a $y$-intercept.

Explain when an exponential function will not have a zero. Give an example of a function without a zero as part of your explanation.

An exponential function will not have a zero when the horizontal asymptote prevents it from intersecting the $x$-axis. An example of such a function is $f(x)=2^{x}+5$.

