Objective: Solve cube root equations algebraically.

Concept

A Radical Equation contains a variable within a radical or a variable raised to a non-integer rational exponent.

$$
\begin{array}{rrr}
& \begin{array}{r}
\text { Examples } \\
\sqrt{x-4}
\end{array}=7 & (x+5)^{\frac{1}{2}}=9
\end{array} \sqrt[3]{x^{2}-5}=2
$$

Non-Examples
$\sqrt{x}+9$ (no equal sign)
$x-12=6$ (no radical or non-integer rational exponent)
$(x+4)^{\frac{1}{2}}$ (no equal sign)

Objective: Solve cube root equations algebraically.

Concept

Steps to Solve a Radical Equation

1. Isolate the radical expression. If the equation contains more than one radical expression, choose one to isolate.
2. Raise both sides of the equation to the appropriate power so the isolated root and power cancel.
3. Solve the resulting equation. Be aware of whether the equation is linear or quadratic.
4. Check for Extraneous Solutions and then write the final solution set.

Radical equations can have extraneous solutions:

1. Solutions that fail to make the left side and right side of the equation equal.
2. Solutions that are imaginary or create imaginary values when substituted into the original equation.

Objective: Solve cube root equations algebraically.

Ex) Solve the equation.
(1) $\sqrt[3]{x}=2$

(3) $x=8$
(4) check.

$$
\begin{array}{r}
\sqrt[3]{8}=2 \\
2=2
\end{array}
$$

solution: $x=8$

Objective: Solve cube root equations algebraically.

Ex) Solve the equation.
(1) $\sqrt[3]{x}=-4$
(2) cube both sides

$$
\begin{aligned}
&(\sqrt[3]{x})^{3}=(-4)^{3} \\
&-4 \cdot-4 \cdot-4 \\
& 16 \cdot-4
\end{aligned}
$$

(3)

$$
x=-64
$$

(4) check.

$$
\begin{aligned}
& \begin{array}{l}
\sqrt[3]{64} \\
\stackrel{?}{=}-4 \\
-4 \\
-4 \\
\text { solution: } x=-64
\end{array} \\
& \text { s=-6 }
\end{aligned}
$$

Objective: Solve cube root equations algebraically.

Ex) Solve the equation.

$$
\begin{aligned}
& \frac{5 \sqrt[3]{3 x+1}=-10}{5 \cdot \sqrt[3]{3 x+1}}=\frac{-10}{5} \\
& \sqrt[3]{3 x+1}=-2
\end{aligned}
$$

$$
\text { (1) } \frac{5 \cdot \sqrt[3]{3 x+1}}{5}=\frac{-10}{5}
$$

(2) cube both sides

$$
(\sqrt[3]{3 x+1})^{\frac{3}{3}}=(-2)_{-2 \cdot-2 \cdot-2}^{3}
$$

(3)

$$
\begin{array}{r}
3 x+1=-8 \\
\frac{3 x}{3}=\frac{-9}{3}
\end{array}
$$

$$
x=-3
$$

(4) cheek.

$$
\begin{gathered}
5 \cdot \sqrt[3]{3(-3)+1} \stackrel{?}{=}-10 \\
5 \cdot \sqrt[3+1]{-8}=-10 \\
5 \cdot-2=
\end{gathered}
$$

$$
-10=-10
$$

Solution: $x=-3$

Objective: Solve cube root equations algebraically.

Practice) Solve the equation.

$$
\sqrt[3]{5-x}+7=6
$$

$$
\begin{aligned}
& \begin{array}{l}
\sqrt[3]{5-x}+7=6 \\
-7-7
\end{array} \\
& \begin{array}{l}
\sqrt[3]{5-x}=-1
\end{array} \\
& \left(\begin{array}{l}
\sqrt[3]{5-x})^{3}=(-1)^{3} \\
5-x=-1 \\
+1+x+1+x \\
\hline 6=x
\end{array}\right. \\
& \text { check : } x=6 ; \sqrt[3]{5-6}+7=6 \rightarrow \sqrt[3]{-1}+7=6 \rightarrow-1+7=6(\text { yes }) \\
& \text { solution: } x=6
\end{aligned}
$$

Objective: Solve cube root equations algebraically.

Ex) Solve the equation.

$$
8-(2 x+5)^{\frac{1}{3}}=3
$$

same as: $8-\sqrt[3]{2 x+5}=3$
(1) $\frac{-3+\sqrt[3]{2 x+5}-3+\sqrt[3]{2 x+5}}{}$
(2) $\quad(5)^{3}=(\sqrt[3]{2 x+5})^{3}$
(3)

$$
\begin{array}{r}
125=2 x+5 \\
\frac{-5}{2}=\frac{2 x}{2} \\
x=60
\end{array}
$$

(4) check.

$$
\begin{gathered}
8-\sqrt[3]{2(60)+5} \stackrel{?}{120+5} \\
8-\sqrt[3]{125} \\
8-5=3 \\
\text { Solution: } x=60
\end{gathered}
$$

Objective: Solve cube root equations algebraically.
Practice) Solve the equation.

$$
(5 x-3)^{\frac{1}{3}}-4=-1
$$

$$
\begin{aligned}
& \begin{array}{l}
\sqrt[3]{5 x-3}-4=-1 \\
\begin{array}{l}
+4+4
\end{array} \\
\begin{array}{l}
\sqrt[3]{5 x-3}=3
\end{array} \\
\left(\begin{array}{l}
\sqrt[3]{5 x-3})^{3}=(3)^{3}
\end{array}\right. \\
\begin{array}{l}
5 x-3=27 \\
+3+3
\end{array} \\
\begin{array}{l}
5 x=30
\end{array} \\
\quad x=6 \\
\text { check : } x=6 ; \sqrt[3]{5(6)-3}-4=-1 \rightarrow \sqrt[3]{27}-4=-1 \rightarrow 3-4=-1(\text { yes }) \\
\text { solution }: x=6
\end{array}
\end{aligned}
$$

Objective: Solve cube root equations algebraically.
Practice) Solve the equation.

$$
\begin{aligned}
& \qquad \frac{2(x-50)^{\frac{1}{3}}=-10}{2} \begin{array}{l}
\frac{3}{x-50} \\
\sqrt[3]{x-50}=-5 \\
2
\end{array} \\
& \begin{array}{l}
(\sqrt[3]{x-50})^{3}=(-5)^{3} \\
x-50=-125 \\
\quad+50+50 \\
\quad x=-75
\end{array} \\
& \text { check: } x=-75 ; 2 \cdot \sqrt[3]{-75-50}=-10 \rightarrow 2 \cdot \sqrt[3]{-125}=-10 \rightarrow 2 \cdot-5=-10(\text { yes }) \\
& \text { solution : } x=-75
\end{aligned}
$$

Objective: Solve cube root equations algebraically.

Ex) Solve the equation.
(1) $\sqrt[3]{x^{2}+9}=2$
(2) $\left(\sqrt[3]{x^{2}+9}\right)^{-3}=(2)^{3}$
(3) $\quad \begin{aligned} x^{2}+9 & =8 \\ -9 & -9\end{aligned}$

$$
\begin{aligned}
x^{2} & =-1 \\
\sqrt{x^{2}} & = \pm \sqrt{-1}
\end{aligned}
$$

$$
x=\underset{\substack{\text { extraneous }} \underset{\dot{x}}{\underset{\sim}{x}} \text { imaginary }}{\substack{\text { ex }}}
$$

(4)

Objective: Solve cube root equations algebraically.

Ex) Solve the equation.

$$
\begin{equation*}
\sqrt[3]{x^{2}-7}-1=6 \tag{1}
\end{equation*}
$$

$$
+1+1
$$

$$
\sqrt[3]{x^{2}-7}=7
$$

(2)

$$
\left(\sqrt[3]{x^{2}-7}\right)^{3}=(7)^{3} \quad \begin{array}{r}
49 \\
\frac{47}{43}
\end{array}
$$

(3)

$$
\begin{gathered}
x^{2}-7=343 \\
+7 \\
x^{2}=350 \\
\sqrt{x^{2}}= \pm \sqrt{350} \\
x= \pm \sqrt{25} \cdot \sqrt{14}
\end{gathered}
$$

(4)

$$
\begin{aligned}
& \text { solutions } \\
& x=-5 \sqrt{14}, 5 \sqrt{14}
\end{aligned}
$$

$$
\begin{gathered}
\sqrt[3]{350-7}-1 \\
\sqrt[3]{343}-1 \\
7-1=6
\end{gathered}
$$

Objective: Solve cube root equations algebraically.

Practice) Solve the equation.

$$
\begin{aligned}
& \qquad \sqrt[3]{x^{2}+2}=3 \\
& \sqrt[3]{x^{2}+2}=3 \\
& \left(\begin{array}{l}
\left.\sqrt[3]{x^{2}+2}\right)^{3} \\
3 \\
x^{2}+2= \\
=27 \\
-2-2 \\
x^{2}=25
\end{array}\right. \\
& \sqrt{x^{2}}= \pm \sqrt{25} \\
& x=-5,5 \\
& \text { check : } x=-5 ; \sqrt[3]{(-5)^{2}+2}=3 \rightarrow \sqrt[3]{27}=3(\text { yes }) \\
& \quad x=5 ; \sqrt[3]{(5)^{2}+2}=3 \rightarrow \sqrt[3]{27}=3 \text { (yes) } \\
& \text { solution: } x=-5,5
\end{aligned}
$$

Objective: Solve cube root equations algebraically.

Closure

Which of the following types of solutions will always be extraneous when solving a radical equation? Choose all that apply.
A) Rational Numbers
B) Irrational Numbers
C) Imaginary Numbers

