Objective: Solve Systems by Graphing

Concept

A system of equations with one linear and one quadratic equation is called a linear-quadratic system.
parabola and line

circle and line

A system of equations with two quadratic equations is called a quadratic system.
two circles

two parabolas

circle and parabola

Objective: Solve Systems by Graphing							
Sketch a graph of a line and parabola that has the indicated number of solutions.							
0 solutions							

Sketch a graph of a line and circle that has the indicated number of solutions.

	Not possible	Not possible	
0 solutions	1 solution	2 solutions	3 solutions

Objective: Solve Systems by Graphing				
Concept				
Sketch a graph of two circles that has the indicated number of solutions.				
			Not possible	Not possible
0 solutions	1 solution	2 solutions	3 solutions	4 solutions

Sketch a graph of a parabola and circle that has the indicated number of solutions.
O solutions
1 solution
2 solutions
3 solutions

Objective: Solve Systems by Graphing
Ex) a) Graph the system, b) state the solutions) for the system; estimate to the nearest tenth if necessary.
solutions: $(-4,-5)$
$\left\{\begin{array}{l}1) \\ y \\ \text { a }\end{array}=-2(x+2)^{2}\right.$ parabola $\}$

$1 \cdot 2=2$
$4 \cdot 2=8$
$9 \cdot 2=18$
(2) $\begin{aligned} & 2 x-y=-3 \\ & +3+y+3+y \\ & y=2 x+3\end{aligned}$

$$
\begin{aligned}
& y \text {-int }(0,3) \\
& \text { slope }=2=\frac{2}{1} \text { up right or } \frac{-2 \text { down }}{-1} \text { left }
\end{aligned}
$$

Objective: Solve Systems by Graphing
Ex) a) Graph the system, b) state the solution (s) for the system; estimate to the nearest tenth if necessary.

Solutions: $\approx(0.6,2.1)$
(1) $\left\{x^{2}+y^{2}=5\right.$
circle and $\approx(-1.5,-1.9) \quad \wedge^{y}$
(2) $y=2 x+1$ line
(1) $x^{2}+y^{2}=$

Center $(0,0)$

$$
\begin{aligned}
& \text { radius }=\sqrt{5} \text { units } \\
& \approx \frac{5-4=1}{9-5=4} \approx \sqrt{2.2} \text { units } \\
& \sqrt{4} \approx \sqrt{5} \approx \sqrt{9} \\
& =2 \approx 2.2=3
\end{aligned}
$$

(2)

$$
\begin{aligned}
& y=2 x+1 \\
& y \text {-int: }(0,1) \\
& \text { slope }=2=\frac{2}{1} \text { up }
\end{aligned}
$$

Objective: Solve Systems by Graphing
Ex) a) Graph the system, b) state the solution (s) for the system; estimate to the nearest tenth if necessary.

$$
\left((x-1)^{2}+(y+1)^{2}=16\right.
$$

(2) $(x+3)^{2}+y^{2}=9$
circle
(1)

$$
\begin{aligned}
& (x-1)^{2}+(y+1)^{2}=16 \\
& \begin{aligned}
C(1,-1) r & =\sqrt{16} \\
& =4 \text { units }
\end{aligned}
\end{aligned}
$$

(2)

$$
\begin{aligned}
(x+3)^{2}+y^{2} & =9 \\
C(-3,0) r & =\sqrt{9} \\
& =3 \text { units }
\end{aligned}
$$

solutions: $(-1.2,2.3)$
and $(-2.7,-2.8) 4 y$

Objective: Solve Systems by Graphing
Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$
\left\{\begin{array}{c}
y=(x-1)^{2} \\
x+y=3
\end{array}\right.
$$

solutions: $(-1,4)$ and $(2,1)$

Objective: Solve Systems by Graphing
Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$
\left\{\begin{array}{c}
(x-3)^{2}+(y-2)^{2}=16 \\
y=-2
\end{array}\right.
$$

solution: $(3,-2)$

Objective: Solve Systems by Graphing
Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$
\left\{\begin{array}{c}
(x+2)^{2}+(y-1)^{2}=25 \\
y=\frac{1}{2} x+2
\end{array}\right.
$$

solutions: $(-6.5,-1.2)$ and (2.5, 3.2)

Objective: Solve Systems by Graphing
Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$
\left\{\begin{array}{c}
y-6=-2(x+7)^{2} \\
x^{2}+y^{2}=11
\end{array}\right.
$$

```
no solution
    \emptyset
```


