

	- O NJEGUIVEI	Solve Systems by <u>Concept</u>	Стартть	
Sketch a graph	n of <u>two circles</u> tha	at has the indicate	ed number of solu	itions.
			Not possible	Not possible
0 solutions	1 solution	2 solutions	3 solutions	4 solutions
sketch a graph	of a parabola and	circle that has th	e indicated numb	er of solutions.
		A		
		2 solutions	3 solutions	4 solutions
0 solutions	1 solution	2 solutions		

Objective: Solve Systems by Graphing Ex) a) Graph the system, b) state the solution(s) for the system; estimate to the (30/utions: (-4,-5) nearest tenth if necessary. $\begin{cases} y - 3 = -2(x+2)^2 \text{ parabola} & \text{and } (-1, 1) \\ 2 & 2x - y = -3 \end{cases}$ line $\int_{+3}^{y-3} y^{2} - 2(x+3)^{2}$ $y = -2(x+3)^{2} + 3$ vertex(-2,3) $0 = -2 \rightarrow x-axis refl$ vertical stretch vertical str

2
$$2x - y = -3$$

 $+3 + y + 3 + y$
 $y = 2x + 3$
 $y - int(0,3)$
 $slope = 2 = \frac{2}{1} vp$ or $\frac{-2}{-1} left$

Ex) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary. Solutions: $\approx (0.6, 2.1)$ $1)\{x^2 + y^2 = 5 \quad \text{Circle and } \approx (-1.5, -1.9)$ $2)\{y = 2x + 1 \quad \text{line} \}$

① $\chi^2 + y^2 = 5$ Center (0,0)

radius = $\sqrt{5}$ units $\sqrt{9-5} = 4$ units $\sqrt{9}$

 $= a \approx a.a = 3$

y = 2x + 1 y - int : (0, 1) slope = 2 = 2 up right

Ex) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

Solutions: (-1.2, 2.3)

 $2(x-1)^2+(y+1)^2 = 16 \text{ circle and } (-2.7, -2.8)$ $(x+3)^2+y^2=9 \text{ circle}$

 $0(x-1)^{2} + (y+1)^{2} = 10$ $c(1,-1) = \sqrt{100}$ = 4 units

(2) $(\chi + 3)^2 + y^2 = 9$ $(\chi + 3)^2 + y^2 = 3$ $(\chi + 3)^2 + y^2 = 3$ $(\chi + 3)^2 + y^2$

Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$\begin{cases} y = (x-1)^2 \\ x + y = 3 \end{cases}$$

solutions: (-1,4) and (2,1)

Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$\begin{cases} (x-3)^2 + (y-2)^2 = 16\\ y = -2 \end{cases}$$

solution: (3, -2)

Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$\begin{cases} (x+2)^2 + (y-1)^2 = 25\\ y = \frac{1}{2}x + 2 \end{cases}$$

solutions: (-6.5, -1.2) and (2.5, 3.2)

Practice) a) Graph the system, b) state the solution(s) for the system; estimate to the nearest tenth if necessary.

$$\begin{cases} y - 6 = -2(x+7)^2 \\ x^2 + y^2 = 11 \end{cases}$$

no solution Ø

