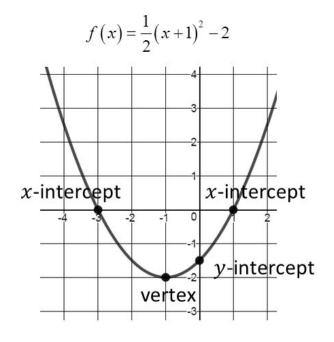
Concept

 $\underline{y\text{-intercept}}$: the point where the function intersects the y-axis (a function can have only one y-intercept)

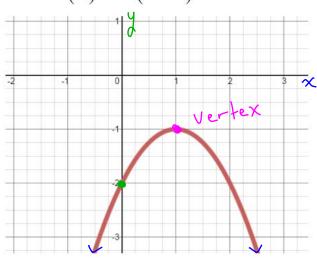
<u>x-intercept</u>: any point where the function intersects the x-axis (a quadratic function can have no x-intercepts, 1 x-intercept, or 2 x-intercepts)

<u>Vertex</u>: the point where a parabola changes direction; the vertex is a <u>minimum</u> if it is the lowest point on the graph; the vertex is a <u>maximum</u> if it is the highest point on the graph



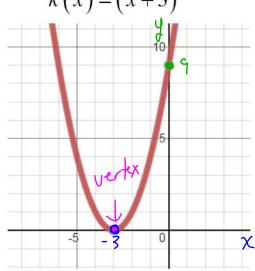
Ex) Find the key features for each quadratic function.

$$h(x) = -(x-1)^2 - 1$$



x-intercept(s) None y-intercept (0,-2) Vertex: (1,-1); Maximum

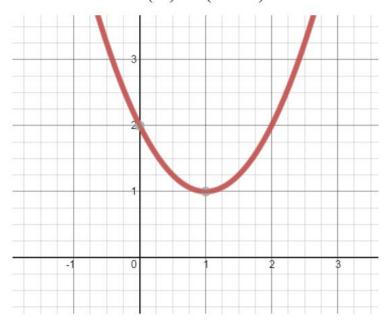
$$k(x) = (x+3)^2$$



x-intercept(s) (-3,0) y-intercept (0,9)Vertex: (-3,0); minimum

Practice) Find the key features for each quadratic function.

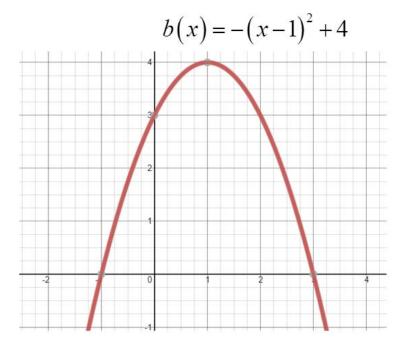
$$d(x) = (x-1)^2 + 1$$
 x-intercept(s) none



y-intercept (0,2)

Vertex: (1,1), *minimum*

Practice) Find the key features for each quadratic function.

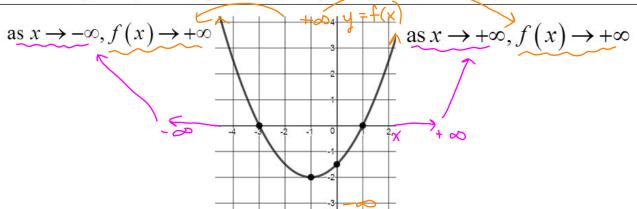


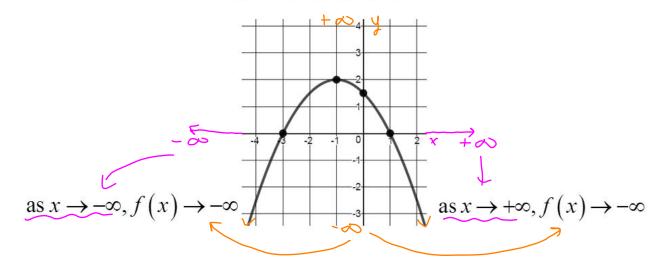
x-intercept(s) (-1,0) and (3,0)

y-intercept (0,3)

Vertex: (1,4), *maximum*

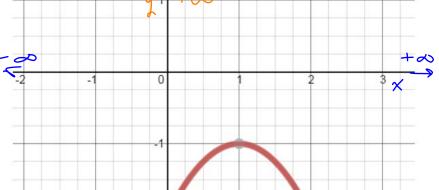
End Behavior: how the function (y-values, f(x)), behaves as the values of x go to positive infinity, $+\infty$, and negative infinity, $-\infty$.

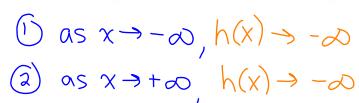




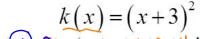
Ex) State the end behavior for each quadratic function.

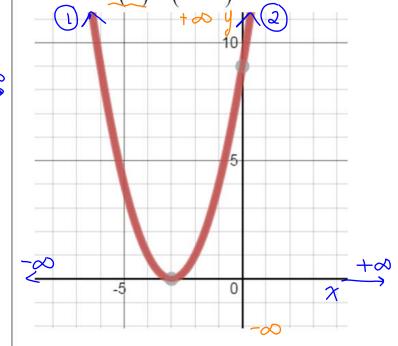
$$h(x) = -(x-1)^2 - 1$$





(2) as
$$x \to +\infty$$
, $h(x) \to -\infty$



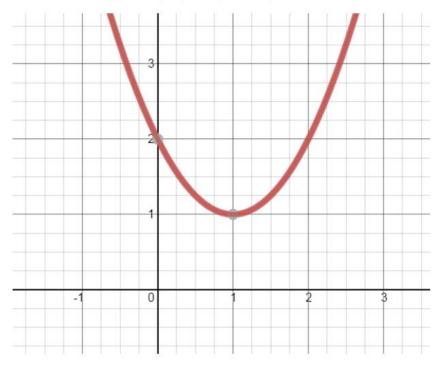


1) as
$$x \rightarrow -\infty$$
, $k(x) \rightarrow +\infty$
2) as $x \rightarrow +\infty$, $k(x) \rightarrow +\infty$

(2) as
$$x \rightarrow +\infty$$
, $k(x) \rightarrow +\infty$

Practice) State the end behavior for the quadratic function.

$$d(x) = (x-1)^2 + 1$$

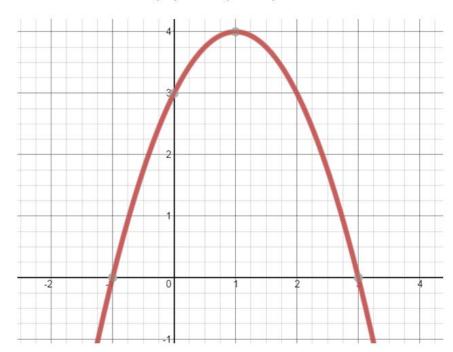


as
$$x \to -\infty$$
, $d(x) \to +\infty$

as
$$x \to +\infty$$
, $d(x) \to +\infty$

Practice) State the end behavior for the quadratic function.

$$b(x) = -(x-1)^2 + 4$$

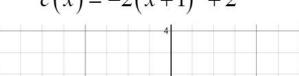


as
$$x \to -\infty$$
, $b(x) \to -\infty$

as
$$x \to -\infty$$
, $b(x) \to -\infty$
as $x \to +\infty$, $b(x) \to -\infty$

Practice) Find all of the key features of the quadratic function.

$$c(x) = -2(x+1)^2 + 2$$



x-intercept(s) (-2,0) and (0,0)

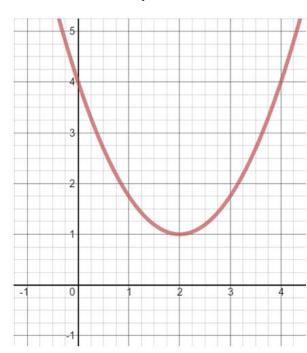
y-intercept (0,0)

Vertex: (-1,2), maximum

End Behavior: $as x \to -\infty, c(x) \to -\infty$ $as x \to +\infty, c(x) \to -\infty$

Practice) Find all of the key features of the quadratic function.

$$r(x) = \frac{3}{4}(x-2)^2 + 1$$



x-intercept(s) <u>none</u>

y-intercept (0,4)

Vertex: <u>(2,1), minimum</u>

End Behavior: $as x \to -\infty, r(x) \to +\infty$ $as x \to +\infty, r(x) \to +\infty$

Practice) Find all of the key features of the quadratic function.

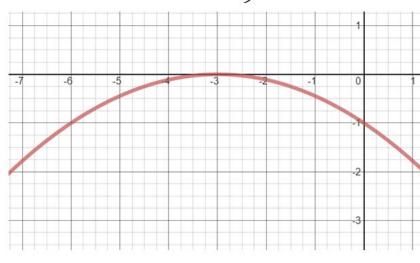
$$v(x) = -\frac{1}{9}(x+3)^2$$

x-intercept(s) (-3,0)

y-intercept (0,-1)

Vertex: (-3,0), maximum

End Behavior: $as \ x \to -\infty, v(x) \to -\infty$ $as \ x \to +\infty, v(x) \to -\infty$



<u>Closure</u>

Wilma thinks that a parabola will always have an x-intercept. Sketch the graph of a quadratic function that is a counterexample.



