Concept

Surface Area of a Square Pyramid

Where P is the Perimeter of the base, B is the Base Area, and ℓ is the Slant Height

$$S = \frac{1}{2}P\ell + B$$

 $S = \frac{1}{2}(4s)\ell + s^2$

Surface Area Using the Net

 $S = 4 \cdot Area of a Triangular Side + Area of the Square Base$

Concept

Steps to find the Surface Area of a Square Pyramid using $S = \frac{1}{2}P\ell + B$

Step 1: Find **P**, the **perimeter of the base** of the pyramid.

Step 2: Find ℓ , the slant height of the pyramid.

Step 3: Find **B**, the base area of the pyramid. $B = s^2$

Step 4: Find S, Surface Area, by substituting P, ℓ , and B into $S = \frac{1}{2}P\ell + B$

Concept

The <u>lateral area</u> of a square pyramid includes the area of _____ all four triangular sides.

To calculate Lateral Area of a square pyramid, use: $\frac{4 \cdot \left(\frac{1}{2} \cdot s \cdot \ell\right)}{2}$ $= 4 \cdot \left(\frac{5 \cdot l}{2}\right)$

Closure

Explain the difference between the height, h, and the slant height, ℓ , of a pyramid.

The height, h, is the perpendicular/vertical distance from the base to its apex. It is found inside the pyramid. The slant height, ℓ , is the height of the triangular side of the pyramid. It is found on the surface of the pyramid.