Objective: Find the surface area of square pyramids

Concept

Surface Area of a Square Pyramid

Where P is the Perimeter of the base, B is the Base Area, and ℓ is the Slant Height

Objective: Find the surface area of square pyramids

Concept

Steps to find the Surface Area of a Square Pyramid using $S=\frac{1}{2} P \ell+B$
Step 1: Find \boldsymbol{P}, the perimeter of the base of the pyramid.

Step 2: Find ℓ, the slant height of the pyramid.

Step 3: Find \boldsymbol{B}, the base area of the pyramid. $B=s^{2}$
Step 4: Find \boldsymbol{S}, Surface Area, by substituting P, ℓ, and B into $S=\frac{1}{2} \boldsymbol{P} \ell+\boldsymbol{B}$

Objective: Find the surface area of square pyramids

Ex) Grace is going to paint all surfaces of the square pyramid. Find the area that will be painted to the nearest tenth of a square foot.

(2)
surface area
(a) formula: $S=\frac{1}{2}(4 s) l+s^{2}$
$=\frac{1}{2} \cdot 4 \cdot 2 \mathrm{ft} \cdot 6.08 \mathrm{ft}+\left(2 \sqrt{t} t^{2}\right.$
$\approx 28.3 \mathrm{ft}^{2}$
(b) Net.

(3) The area that will be
painted is about $28.3 \mathrm{ft}^{2}$.

Captured on Wed May 092018 13:11:13

Objective: Find the surface area of square pyramids

Concept

The lateral area of a square pyramid includes the area of \qquad .

To calculate Lateral Area of a square pyramid, use: $\frac{4 \cdot\left(\frac{1}{2} \cdot s \cdot \ell\right)}{2}$

$$
=4\left(\frac{5 \cdot 1}{2}\right)
$$

Acc Math 2 Surface Area of Square Pyramids.gwb - Wednesday, May 09, 2018 - Page 5 of 6

Objective: Find the surface area of square pyramids
Ex) Josh is designing a stone sculpture shaped like a square pyramid. He is going to polish only the triangular sides of the pyramid. Determine the area of stone Josh will need to polish.

(1) find s and l
(a) $l=10 \mathrm{in}$

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
a^{2}+6^{2}=10^{2} \\
a^{2}+36=100 \\
a^{2}=64 \\
\sqrt{a^{2}}=\sqrt{64} \\
a=8=\frac{5}{2}
\end{gathered}
$$

(2) lateral area

$$
\begin{aligned}
& S=2 \cdot a \\
& S=2 \cdot 8=16 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
L & =4\left(\frac{1}{2} \cdot 5 \cdot l\right) \\
& =4 \cdot \frac{1}{2} \cdot 16 \mathrm{in} \cdot 10 \mathrm{in}=320 \mathrm{in}^{2}
\end{aligned}
$$

(3)

Josh will heed to polish 320 square inches of stone.

Objective: Find the surface area of square pyramids

Closure

Explain the difference between the height, h, and the slant height, ℓ, of a pyramid.

The height, h, is the perpendicular/vertical distance from the base to its apex. It is found inside the pyramid.
The slant height, ℓ, is the height of the triangular side of the pyramid. It is found on the surface of the pyramid.

