Objective: Solve Quadratic Equations Using the Square Root Property.

Fundamental Theorem of Algebra

A non-constant, single-variable polynomial equation with complex coefficients will have at least one complex root/solution.

Linear Equation $($ degree $=1)$
$2 x-3=15$
$2 x^{1}-3=15$
the equation has 1 solution

Cubic Equation $($ degree $=3)$
$x^{3}-5 x^{2}+10 x+5=0$
the equation has 3 solutions

Quadratic Equation $($ degree $=2)$
$6 x^{2}-3 x-15=0$
the equation has 2 solutions

Quartic Equation (degree $=4$)
$2 x^{4}+x^{3}-5 x^{2}+10 x+5=0$
the equation has 4 solutions

Objective: Solve Quadratic Equations Using the Square Root Property.
Concept

Square Root Property

If

$$
x^{2}=n
$$

$$
\text { then } \sqrt{x^{2}}= \pm \sqrt{n}
$$

$$
\text { and } \quad x=-\sqrt{n} \text { or } x=\sqrt{n}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.

Concept

Steps to Solve a Quadratic Equation Using The Square Root Property

1. Isolate x^{2} using algebra.
2. Take the square root of both sides. Remember \pm.
3. Simplify as much as possible and state the solutions.

Properties of Square Roots

$$
\begin{gathered}
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \\
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
\end{gathered}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.

Ex) Solve each equation. Simplify solutions as much as possible.
(1) $x^{2}=16$
(2) square root

$$
\sqrt{x^{2}}= \pm \sqrt{16}
$$ property

$$
x=-\sqrt{16}, \sqrt{16}
$$

(3) simplify

Objective: Solve Quadratic Equations Using the Square Root Property.

Ex) Solve each equation. Simplify solutions as much as possible.
(1) $x^{2}=24$
(2) square root

$$
\sqrt{x^{2}}= \pm \sqrt{24}
$$ property

simplify

$$
x=-\sqrt{24}, \sqrt{24}
$$

$$
\begin{equation*}
\sqrt{4} \cdot \sqrt{6} \tag{3}
\end{equation*}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.
Ex) Solve each equation. Simplify solutions as much as possible.

$$
\begin{aligned}
& \begin{array}{l}
8 x^{2}-10=0 \\
+10+10 \\
x^{2} \text { isolate } \\
x^{2}
\end{array} \\
& \begin{array}{l}
\frac{8 x^{2}}{8}=\frac{10}{8} \\
\end{array} \\
& x^{2}=\frac{5}{4}
\end{aligned}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.
Ex) Solve each equation. Simplify solutions as much as possible.

$$
-3 x^{2}-15=0
$$

(1) isolate

$$
x^{2} \quad \frac{-3 x^{2}}{-3}=\frac{15}{-3}
$$

(2) square root property

$$
x^{2}=-5
$$

$$
\sqrt{x^{x}}= \pm \sqrt{-5}
$$

$$
\begin{aligned}
& x= \pm \sqrt{-5} \\
& x= \pm \sqrt{5} \cdot \sqrt{-1} \\
& x=-\sqrt{5} i, \sqrt{5} i
\end{aligned}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.
Ex) Solve each equation. Simplify solutions as much as possible.

$$
\left.\begin{array}{cc}
\\
\text { (1) isolate } \\
x^{2}
\end{array} \quad \begin{array}{rl}
6 x^{2}-\mathbf{1 1}=\mathbf{0} \\
+11+11
\end{array}\right] \begin{aligned}
\frac{6 x^{2}}{6} & =\frac{11}{6} \\
x^{2} & =\frac{11}{6}
\end{aligned}
$$

(2) square root property

$$
\sqrt{x^{2}}= \pm \sqrt{\frac{11}{6}}
$$

(3) simplify

$$
\begin{aligned}
x & = \pm \frac{\sqrt{11} \cdot \sqrt{6}}{\sqrt{6}} \begin{array}{c}
\text { rationalize } \\
\text { the } \\
\text { denominator }
\end{array} \\
& = \pm \frac{\sqrt{66}}{\sqrt{36}}= \pm \frac{\sqrt{66}}{6}
\end{aligned}
$$

$$
x=\frac{-\sqrt{66}}{6}, \frac{\sqrt{66}}{6}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.

Ex) Solve each equation. Simplify solutions as much as possible.
(1) $(x-7)^{2}=\mathbf{3 6}$

$$
\begin{aligned}
& \text { (2) square } \\
& \text { root property } \begin{aligned}
\sqrt{(x-7)^{z}} & = \pm \sqrt{36} \\
\text { (3) } & \begin{aligned}
x-7 & =-6,6 \\
x & =\frac{7}{1}, \frac{7}{13} \\
x & =1,13
\end{aligned}
\end{aligned}>. \begin{array}{l}
x, 7
\end{array}
\end{aligned}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.

Ex) Solve each equation. Simplify solutions as much as possible.
(1) $(x+4)^{2}=-18$
(2) square root property

$$
\begin{aligned}
\sqrt{(x+4)^{2}}= & \pm \sqrt{-18} \\
x+4= & \pm \sqrt{18} \cdot \sqrt{-1} \\
& \pm \sqrt{9} \cdot \sqrt{2} \cdot \sqrt{-1}
\end{aligned}
$$

$$
\begin{gathered}
x+4= \pm 3 \sqrt{2} i \\
-4-4 \\
\hline x=-4 \pm 3 \sqrt{2} i \\
x=-4-3 \sqrt{2} i \\
-4+3 \sqrt{2} i
\end{gathered}
$$

(3)

Objective: Solve Quadratic Equations Using the Square Root Property.
Ex) Solve each equation. Simplify solutions as much as possible.
(1) isolate

$$
3(x+5)^{2}-9=12
$$

$$
(x+5)^{2}
$$

$$
\frac{3 \cdot(x+5)^{2}}{3}=\frac{21}{3}
$$

$$
(x+5)^{2}=7
$$

(2) square root property

$$
\sqrt{(x+5)^{2}}= \pm \sqrt{7}
$$

(3)

$$
\begin{array}{r}
x+5=\begin{array}{r}
+\sqrt{7} \\
-5
\end{array} \\
\hline x=-5 \pm \sqrt{7} \\
x=-5-\sqrt{7},-5+\sqrt{7}
\end{array}
$$

Objective: Solve Quadratic Equations Using the Square Root Property.
Ex) Solve each equation. Simplify solutions as much as possible.
(1) isolate

$$
-2(x-1)^{2}+8=20
$$

$$
(x-1)^{2}
$$

$$
\frac{-8-8}{\frac{-2 \cdot(x-1)^{2}}{-2}=\frac{12}{-2}}
$$

$$
(x-1)^{2}=-6
$$

(2) square root property

$$
\sqrt{(x-1)^{2}}= \pm \sqrt{-6} \sqrt{6 \cdot \sqrt{-1}}
$$

(3)

$$
\begin{array}{r}
x-1= \pm \sqrt{6} i \\
+1+1 \\
x=1 \pm \sqrt{6} i \\
x=1-\sqrt{6} i, 1+\sqrt{6} i
\end{array}
$$

