Objective: Compare two functions using a graph.
Concept

Find $f(1)$.
Find $f(1)$ means: If $x=1$, determine the corresponding y value for the function $f(x)$.

Therefore, $f(1)=-2$.
$f(0)=$ \qquad
$f(3)=$ \qquad

Objective: Compare two functions using a graph.
Ex) Find each value.

$$
\begin{gathered}
f(6)=\underline{0} \\
g(6)=\underline{3} \\
f(2)-g(2)=\underline{2-(-1)=3} \\
g(1)+f(-2)=-2+(4)=2 \\
f(4)=\underline{1} \\
g(4)=
\end{gathered}
$$

Objective: Compare two functions using a graph.

Concept

Where is $f(x)=g(x)$? means: for what value(s) of \underline{x} do the two functions have the same y value. This can be determined by finding where the graphs of two functions intersect.

Where is $f(x)=g(x) ?$
For example: Since $f(-2)=6$ and $g(-2)=6, f(x)=g(x)$ at $x=-2$.
and

Since $f(3)=1$ and $g(3)=1$, $f(x)=g(x)$ at $x=3$.

Objective: Compare two functions using a graph.

Ex) Find where $k(x)=m(x)$.
$x=$? when y values
are the same

$$
k(x)=m(x)
$$

at $x=2$ and $x=5$

Objective: Compare two functions using a graph.

Ex) Find where $p(x)=b(x)$.

$$
\begin{aligned}
& p(x)=b(x) \quad a t \\
& x=-5 \text { and } x=-2
\end{aligned}
$$

Objective: Compare two functions using a graph.

Concept: Find where $f(x)-g(x)=0$.
Using algebra to isolate $f(x)$, we can see that $f(x)-g(x)=0$ means the same thing as $f(x)=g(x)$.

$$
\begin{aligned}
& f(x)-g(x)=0 \\
& \frac{+g(x)+g(x)}{f(x)=g(x)}
\end{aligned}
$$

Therefore, $f(x)-g(x)=0$ at $x=0$ and $x=3$.

Objective: Compare two functions using a graph.

Ex) Find where $m(x)-n(x)=0$.

Objective: Compare two functions using a graph.

Closure

True/False: Two functions are equal to each other at the y-coordinate of a point of intersection. Explain your reasoning.

False. Two functions have the same value (are equal) at the x coordinate of a point of intersection.

True/False: Two functions have a difference of zero at the x-coordinate of a point of intersection. Explain your reasoning.

True. Two functions have a difference of zero at the x-coordinate of a point of intersection because the y values are equal making the difference 0 .

