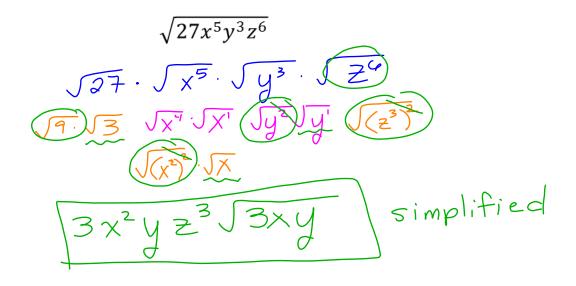
| Objective: Simplify | / Radical | <b>Expressions</b> | with | variable | radicands |
|---------------------|-----------|--------------------|------|----------|-----------|
| j                   |           | -//                |      |          |           |

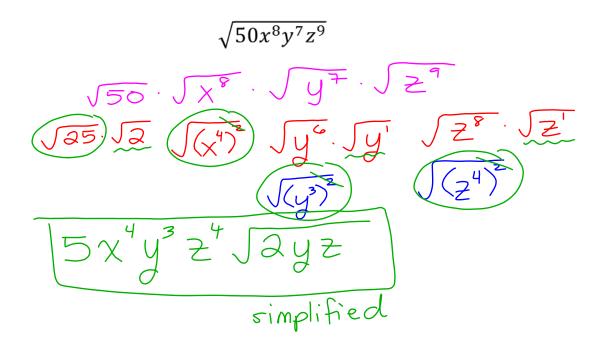
# Concept

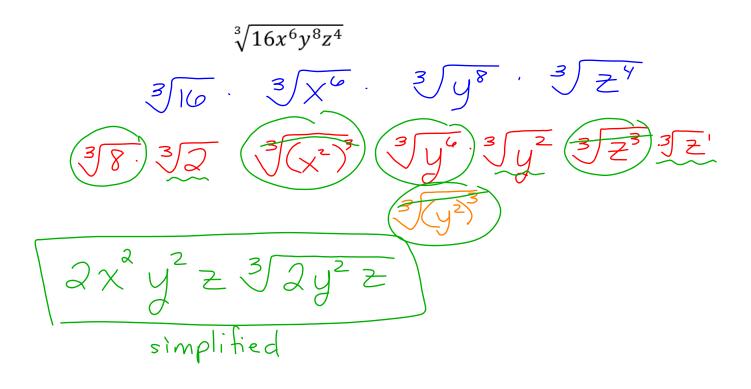
| Properties of $n$ th Roots                                                                                             |                                                                    |                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| For $a>0$ and $b>0$                                                                                                    |                                                                    |                                                           |  |  |  |  |
| Words                                                                                                                  | Numbers                                                            | Algebra                                                   |  |  |  |  |
| <b>Product Property of Roots</b> : The <i>n</i> th root of a product is equal to the product of the <i>n</i> th roots. | $\sqrt[3]{16} = \sqrt[3]{8} \cdot \sqrt[3]{2} = 2\sqrt[3]{2}$      | $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$            |  |  |  |  |
| Quotient Property of Roots: The $n$ th root of a quotient is equal to the quotient of the $n$ th roots.                | $\sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{\sqrt{25}} = \frac{4}{5}$ | $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ |  |  |  |  |
| Inverse Property of Powers of Roots                                                                                    | $\sqrt[3]{(2)^3} = 2$ and $\sqrt{(6)^2} = 6$                       | $\sqrt[n]{(b)^n} = b$                                     |  |  |  |  |

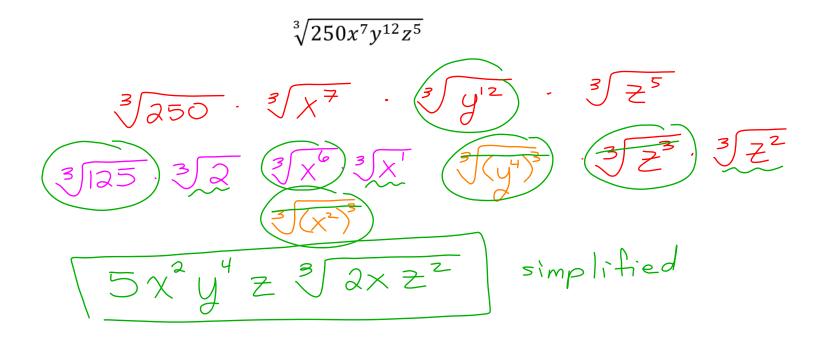
$$= 4\sqrt{6^5}$$

$$= 4\sqrt{6^5}$$


$$= 6\sqrt{4}$$


$$= 6\sqrt{4}$$
Simplified


$$= \sqrt[8]{x^{11}}$$


$$= \sqrt[8]{x} \cdot \sqrt[8]{x^3}$$

$$= \sqrt[8]{x^3}$$
simplified









#### Closure

How is simplifying  $\sqrt{24}$  different from simplifying  $\sqrt[3]{24}$ ?

To simplify  $\sqrt{24}$  you would use the factors of  $\sqrt{4} \cdot \sqrt{6}$  because 4 is a perfect square.

To simplify  $\sqrt[3]{24}$  you would use the factors of  $\sqrt[3]{8} \cdot \sqrt[3]{3}$  because 8 is a perfect cube.