Objective: Simplify Radical Expressions with variable radicands
Concept

Properties of \boldsymbol{n} th Roots		
For $a>0$ and $b>0$		Algebra
Words	Numbers	$\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
Product Property of Roots: The nth root of a product is equal to the product of the nth roots.	$\sqrt[3]{16}=\sqrt[3]{8} \cdot \sqrt[3]{2}=2 \sqrt[3]{2}$	$\sqrt[n]{\frac{16}{25}}=\frac{\sqrt{16}}{\sqrt{25}}=\frac{4}{5}$

Objective: Simplify Radical Expressions with variable radicands
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible.

$$
\begin{aligned}
& \sqrt[4]{6^{5}} \\
= & \sqrt[4]{6^{4}} \cdot \sqrt[4]{6} \\
= & \frac{\sqrt[4]{6}}{\text { simplified }}
\end{aligned}
$$

$$
\sqrt[8]{x^{11}}
$$

$=$

$=\frac{\sqrt[8]{X^{3}}}{\text { simplified }}$

Objective: Simplify Radical Expressions with variable radicands
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible.

Objective: Simplify Radical Expressions with variable radicands
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible.

Objective: Simplify Radical Expressions with variable radicands
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible.

Objective: Simplify Radical Expressions with variable radicands
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible.

Objective: Simplify Radical Expressions with variable radicands

Closure

How is simplifying $\sqrt{24}$ different from simplifying $\sqrt[3]{24}$?
To simplify $\sqrt{24}$ you would use the factors of $\sqrt{4} \cdot \sqrt{6}$ because 4 is a perfect square.

To simplify $\sqrt[3]{24}$ you would use the factors of $\sqrt[3]{8} \cdot \sqrt[3]{3}$ because 8 is a perfect cube.

