Objective: Solve Trigonometric Equations with more than One Trigonometric Function
Concept
For the function $y=\sin \theta$: the domain, θ, which is all angle measures, is the set of all real numbers and the range, y, is the values of sine in the interval $[-1,1]$.

For the function $y=\cos \theta$: the domain, θ, which is all angle measures, is the set of all real numbers and the range, y, is the values of cosine in the interval $[-1,1]$.

Objective: Solve Trigonometric Equations with more than One Trigonometric Function

Steps to Solve a Trigonometric Equation Containing More than One
 Trigonometric Function

Quadratic Structure

1. Use a Pythagorean Identity to write the equation in terms of one trigonometric function.
2. Use a Quadratic Strategy (factoring, square root property, quadratic formula) to solve for the trigonometric function values.
3. Find the angle measure(s) that correspond to the function value(s).

Acc Math 3 Solve Trigonometric Equations with More than One Trig Function.gwb - Tuesday, April 30, 2019 -Page 3 of 6

Objective: Solve Trigonometric Equations with more than One Trigonometric Function
Ex) Solve the equation over the interval $[0,2 \pi)$.

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& \sin ^{2} x=1-\cos ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } 2\left(1-\cos ^{2} x\right)+3 \cos x-3=0 \\
& 2-2 \cos ^{2} x+3 \cos x-3=0 \\
& -1 \cdot\left[-2 \cos ^{2} x+3 \cos x-1=0\right] \\
& 2 \cos ^{2} x-3 \cos x+1=0 \\
& (2 \cos x-1)(\cos x-1)=0 \\
& 2 \cos x-1=0 \text { or } \cos x-1=0 \\
& \cos x=\frac{1}{2} \quad \cos x=1
\end{aligned}
$$

$$
\begin{gathered}
x=\frac{\pi}{3}, \frac{5 \pi}{3} \quad x=0_{\text {radians }} \\
x=0, \frac{\pi}{3}, \frac{5 \pi}{3}
\end{gathered}
$$

Objective: Solve Trigonometric Equations with more than One Trigonometric Function

Steps to Solve a Trigonometric Equation Containing More than One Trigonometric Function

Linear Structure

1. Isolate one trigonometric function on each side of the equation.
2. Square both sides to create a quadratic structure.
3. Use a Pythagorean Identity to write the equation in terms of one trigonometric function.
4. Use a Quadratic Strategy (factoring, square root property, quadratic formula) to solve for the trigonometric function values.
5. Find the angle measure(s) that correspond to the function value(s). 6. Check for extraneous solutions.

Objective: Solve Trigonometric Equations with more than One Trigonometric Function
Ex) Solve each equation over the interval $[0,2 \pi)$.
(1) $\cos x+1=\sin x$$(\cos x+1)^{2}=$
$(\sin x)^{2}$
$\sin x \cdot \sin x$ $(\cos x+1)(\cos x+1)$
$\cos ^{2} x+\cos x+\cos x+1=\sin ^{2} x$
$\cos ^{2} x+2 \cos x+1=\frac{\sin ^{2} x}{1}$3 $\sin ^{2} x+\cos ^{2} x=1$
$\sin ^{2} x=1-\cos ^{2} x$

$2 \cos x(\cos x+1)=0$

$$
\frac{2 \cos x}{2}=\frac{0}{2} \text { or } \cos x+1=0
$$

$\cos x=0$

$$
\cos x=-1
$$

$x=\pi$
(6) check!
$\cos \pi+1 \stackrel{?}{=} \sin \pi$
$\cos x+1=\sin x$
$\cos \frac{\pi}{2}+1 \stackrel{?}{=} \sin \frac{\pi}{2}$
$\cos \frac{3 \pi}{2}+1 \stackrel{?}{=} \sin \frac{3 \pi}{2}$
$0+1=1$
$1=1$
$0+1=-1$
$1 \neq-1$

Objective: Solve Trigonometric Equations with more than One Trigonometric Function

Closure

How do you know if a trigonometric equation has linear structure? How do you know if a trigonometric equation has quadratic structure?

A trigonometric equation has linear structure if all trigonometric functions (\sin , \cos , \tan) are to the first power. A trigonometric equation has quadratic structure if the highest power of a trigonometric function is 2.

