Objective: Divide complex numbers

Ex) Simplify each expression.

$72+42+-24 i+126 i$

$$
114+102 i \text { (3) } \begin{aligned}
& a+b i \\
& \text { form }
\end{aligned}
$$

Objective: Divide complex numbers

Concept

Conjugates are expressions with two terms in which the first terms are the same and the second terms are opposites.

The conjugate of $3+4 i$ is $3-4 i$.

The conjugate of $-2-5 i$ is $-2+5 i$.
The conjugate of $3 x+5$ is $3 x-5$.
The conjugate of $-1-\sqrt{7}$ is $-1+\sqrt{7}$.

Objective: Divide complex numbers

Concept

How to Divide Two Complex Numbers

1. Multiply the quotient of the complex numbers by a ratio equivalent to 1 . Create this ratio using the conjugate of the denominator.
2. Perform the multiplication between the numerators and between the denominators.
3. Write the result in the form $a+b i$, reducing fractions where necessary.

Objective: Divide complex numbers
Ex) Simplify each expression.
(1) find the

$$
\frac{10}{-6-2 i}
$$ conjugate of the denominator

$$
\begin{aligned}
& \text { (2) multiply by } \\
& \begin{aligned}
\frac{10}{(-6-2 i)} \cdot \frac{(-6+2 i)}{(-6+2 i)}=\frac{10(-6+2 i)}{-6(-6+2 i)+-2 i(-6+2 i)} \\
=\frac{-60+20 i}{36=-2 i} \pm+2 i-40 \\
0 \\
+4-1
\end{aligned}
\end{aligned}=\frac{-60+20 i}{40} .
$$

Objective: Divide complex numbers
Ex) Simplify each expression.

$$
\begin{aligned}
& \text { * } \frac{2-5 i}{5-5 i} \\
& \text { (1) conjugate of } \\
& \text { * denominator } \\
& \text { (2) } \frac{(2-5 i)}{(5-5 i)} \cdot \frac{(5+5 i)}{(5+5 i)} \\
& \frac{2(5+5 i)+-5 i(5+5 i)}{5(5+5 i)+-5 i(5+5 i)}=\frac{10+10 i-25 i-25 i^{2}}{\left.25+25 i=25 i-25 i^{2}\right)} \\
& =\frac{35-15 i}{50}
\end{aligned}
$$

$$
\begin{array}{r}
3 \\
a+b i
\end{array} \frac{35}{50}-\frac{15}{50} i=\frac{7}{10}-\frac{3}{10} i
$$

form

Objective: Divide complex numbers
Ex) Simplify each expression.

$$
\frac{3-2 i}{-2+5 i}
$$

$$
-2-5 i
$$

$$
\begin{aligned}
& \text { (2) } \frac{(3-2 i)}{(-2+5 i)} \cdot \frac{(-2-5 i)}{(-2-5 i)}=\frac{3(-2-5 i)+-2 i(-2-5 i)}{-2(-2-5 i)+5 i(-2-5 i)} \\
& =\frac{-10-15 i+4 i+10 i^{2}}{4+10 i+10 i-25\left(i^{2} i\right.} \\
& +25
\end{aligned}
$$

Objective: Divide complex numbers
Ex) Simplify each expression.
the denominator

$$
\begin{aligned}
\text { conjugate } & =0-3 i \\
& =-3 i
\end{aligned}
$$

$$
=-3 i
$$

$$
\begin{aligned}
& \frac{6+2 i}{-3 i} \\
& \text { (1) conjugate } \\
& \text { * } 3 i=0+3 i \\
& \text { (2) } \frac{(6+2 i)}{3 i} \cdot \frac{-3 i}{-3 i} \\
& =\frac{-3 i(6+2 i)}{3 i \cdot-3 i}=\frac{-18 i-6 i^{2}-9 .-1}{-9} \\
& =\frac{6-18 i}{9} \\
& (3)=\frac{6}{a+b i}-\frac{18}{9} i \\
& \text { form }=\frac{2}{3}-2 i
\end{aligned}
$$

