Objective: Find the zeros of cubic and quartic functions algebraically.

Concept

A cubic function of the form
$f(x)=a\left(\frac{1}{b}(x-h)\right)^{3}+k$ has
one real zero.

A quartic function of the form $f(x)=a\left(\frac{1}{b}(x-h)\right)^{4}+k$ has one real zero, 2 real zeros, or no real zeros.

Objective: Find the zeros of cubic and quartic functions algebraically.

Concept

To solve an equation you must undo each operation in the reverse of the order of operations.

1. Undo addition/subtraction outside parentheses.
2. Undo multiplication/division outside parentheses.
3. Undo exponents outside parentheses.
4. Undo operations inside parentheses using the same undoing order as above.

Acc Math 2 Find the Zeros of Cubic and Quartic Functions Algebraically.gwb - Tuesday, April 02, 2019 -Page 3 of 8

Acc Math 2 Find the Zeros of Cubic and Quartic Functions Algebraically.gwb - Tuesday, April 02, 2019 - Page 4 of 8

Objective: Find the zeros of cubic and quartic functions algebraically.
Ex) Find the real zeros of the function algebraically. Identify real zeros as rational or irrational.

Acc Math 2 Find the Zeros of Cubic and Quartic Functions Algebraically.gwb - Tuesday, April 02, 2019 -Page 5 of 8

Objective: Find the zeros of cubic and quartic functions algebraically.
Ex) Find the real zeros of the function algebraically. Identify real zeros as rational or irrational.

$$
\begin{aligned}
& y=\frac{1}{5}(x+2)^{3}-25 \\
& \downarrow \\
& 0=\frac{1}{5}(x+2)^{3}-25 \\
& +25 \\
& \begin{array}{l}
5 \cdot 25=5!\frac{1}{5} \cdot(x+2)^{3}
\end{array} \\
& 125=(x+2)^{3} \\
& \sqrt[3]{125}=\sqrt[3]{(x+2)^{3}}
\end{aligned}
$$

zero $=3$; rational

Acc Math 2 Find the Zeros of Cubic and Quartic Functions Algebraically.gwb - Tuesday, April 02, 2019 -Page 6 of 8

Acc Math 2 Find the Zeros of Cubic and Quartic Functions Algebraically.gwb - Tuesday, April 02, 2019 -Page 7 of 8

Objective: Find the zeros of cubic and quartic functions algebraically.
Ex) Find the real zeros of the function algebraically. Identify real zeros as rational or irrational.

Fourth Root Property

$$
\begin{aligned}
& \begin{array}{l}
\frac{m(x)}{1}=2(x+1)^{4}-32 \\
y=2(x+1)^{4}-32 \\
y=2(x+1)^{4}-32 \\
0 \\
32 \\
32
\end{array}
\end{aligned}
$$ If $x^{4}=c$, then $x= \pm \sqrt[4]{c}$

$$
\frac{32}{2}=\frac{2(x+1)^{4}}{2}
$$

$$
16=(x+1)^{4}
$$

zeros $=-3,1$; rational

Acc Math 2 Find the Zeros of Cubic and Quartic Functions Algebraically.gwb - Tuesday, April 02, 2019 -Page 8 of 8

Objective: Find the zeros of cubic and quartic functions algebraically.
Ex) Find the real zeros of the function algebraically. Identify real zeros as rational or irrational.
\qquad

$$
y=-\frac{2}{3} x^{4}-10
$$

$$
\begin{array}{r}
1 \\
0=-\frac{2}{3} x^{4}-10 \\
10 \\
+10
\end{array}
$$

There are no real zeros.

