Objective: Use vertex form to find the zeros of a quadratic function.

Concept

How to Find the Zeros of a Function from Vertex Form Without Graphing

1. Set the function equal to 0 (i.e. let $f(x)=0$). This is because the definition of a zero is a value of x that has a corresponding function value of 0 .
2. Solve for x. These values will be the zeros of the function. This will use your algebra skills, including the square root property.
3. State the zeros of the function.

$$
f(x)=(x+1)^{2}-4
$$

Objective: Use vertex form to find the zeros of a quadratic function.
Ex) Find the zeros of the quadratic function without graphing. State whether the zeros are rational, irrational, or imaginary.

$$
k(x)=-2 x^{2}+64
$$

* concept:
zeros: $x=$? when $y=0$
(1)

$$
\begin{aligned}
& 0=-2 x^{2}+64 \\
& \frac{-64}{\frac{-64}{-2}}=\frac{-64}{-2} \\
& 32=x^{2} \\
& \pm \sqrt{32}=\sqrt{x^{2}} \\
& \pm 4 \sqrt{2}=x
\end{aligned}
$$

Objective: Use vertex form to find the zeros of a quadratic function.

Ex) Find the zeros of the quadratic function without graphing. State whether the zeros are rational, irrational, or imaginary.

$$
\begin{gather*}
d(x)=6 x^{2}+14 \\
\downarrow \\
0=6 x^{2}+14 \tag{1}\\
\frac{-14}{} \begin{array}{c}
-14 \\
\text { reduce } \frac{-14}{6}=\frac{6 x^{2}}{6}
\end{array} .
\end{gather*}
$$

$$
\frac{-7}{3}=x^{2}
$$

$$
\pm \sqrt{\frac{-7}{3}}=\sqrt{x^{2}}
$$

$$
\begin{aligned}
& \sqrt{-\frac{1}{3}}=\sqrt{x^{2}} \\
& x= \pm \frac{\sqrt{21} \cdot \sqrt{-7}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}= \pm \frac{\sqrt{-21}}{\sqrt{9}}
\end{aligned}
$$

Acc Math 2 Find Zeros from Vertex Form 18-19.gwb - Friday, November 30, 2018 - Page 4 of 7

Objective: Use vertex form to find the zeros of a quadratic function.
Ex) Find the zeros of the quadratic function without graphing. State whether the zeros are rational, irrational, or imaginary.

$$
f(x)=-(x-3)^{2}+4
$$

(1)

$$
\begin{aligned}
& \text { d } \\
& 0=-(x-3)^{2}+4 \\
& -4 \quad-4 \\
& \left.\frac{-4}{-1}=\frac{-1 \cdot(x}{-1}-3\right)^{2} \\
& 4=(x-3)^{2} \\
& \pm \sqrt{4}=\sqrt{(x-3)^{2}}
\end{aligned}
$$

(2) The zeros of $f(x)$
are 1 and 5 .
(3) The zeros are rational.

Objective: Use vertex form to find the zeros of a quadratic function.
Ex) Find the zeros of the quadratic function without graphing. State whether the zeros are rational, irrational, or imaginary.

$$
\begin{gather*}
\boldsymbol{g}(x)=3(x+4)^{2}+24 \\
\frac{1}{0}=3(x+4)^{2}+24 \tag{1}\\
\frac{-24}{-24} \\
\frac{-24}{3}=\frac{3(x+4)^{2}}{3} \\
\frac{-8}{-8}=(x+4)^{2} \\
\pm \sqrt{-8}=x+4)^{2} \\
\pm \sqrt{8} \cdot \sqrt{-1} \\
\pm \sqrt{4} \cdot \sqrt{2} \cdot \sqrt{-1}=x+4 \\
\pm-2 \sqrt{2} i=x+4
\end{gather*}
$$

Acc Math 2 Find Zeros from Vertex Form 18-19.gwb - Friday, November 30, 2018 - Page 6 of 7

Objective: Use vertex form to find the zeros of a quadratic function.
Ex) Find the ores the quadratic function without graphing. State whether the zeros are rational, irrational, or imaginary.

$$
h(x)=2(x-2)^{2}-5
$$

(1)

$$
\begin{aligned}
& \frac{0}{5}=2(x-2)^{2}+\frac{5}{5} \\
& \frac{5}{2}=\frac{2(x-2)^{2}}{2} \\
& \frac{5}{2}=(x-2)^{2} \\
& \pm \sqrt{\frac{5}{2}}=\sqrt{(x-2)^{2}} \\
& x-2= \pm \frac{\sqrt{5}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{\sqrt{10}}{\sqrt{4}}
\end{aligned}
$$

$$
\begin{aligned}
& x-2= \pm \frac{\sqrt{10}}{2} \\
& +2+2
\end{aligned}
$$

$$
x=2 \pm \frac{\sqrt{10}}{2}
$$

(2) The zeros of $h(x)$ are $2-\frac{\sqrt{10}}{2}$ and $2+\frac{\sqrt{10}}{2}$
(3) The zeros are irrational.

Objective: Use vertex form to find the zeros of a quadratic function.
Ex) Find the zeros of the quadratic function without graphing. State whether the zeros are rational, irrational, or imaginary.

$$
\begin{gathered}
x+8=\frac{1}{-8} \begin{array}{r}
-8 \\
-8
\end{array} \\
x=-8+\frac{3 \sqrt{3}}{2} i \\
2+\frac{3 \sqrt{3}}{2} i
\end{gathered}
$$

$$
\begin{aligned}
& \text { (2) The zeros of } \underbrace{-8(x) \text { are }} \begin{array}{l}
\text { (3) } \frac{3 \sqrt{3}}{2} i \text { The }-8+\frac{3 \sqrt{3}}{2} i
\end{array}]
\end{aligned}
$$

$$
\begin{aligned}
& p(x)=-4(x+8)^{2}-27 \\
& \text { (1) } \\
& \stackrel{\downarrow}{0}=-4(x+8)^{2}-27 \\
& \frac{+27}{\frac{27}{-4}=\frac{-4(x+8)^{2}}{-4}} \\
& -\frac{27}{4}=(x+8)^{2} \\
& \pm \sqrt{\frac{-27}{4}}=\sqrt{(x+8)^{2}} \\
& x+8=\frac{+\sqrt{-27}}{\sqrt{4}}=\frac{ \pm \sqrt{27} \cdot \sqrt{-1}}{2}
\end{aligned}
$$

