Objective: Identify Key Features of a Quadratic Function.

Concept

Domain: the set of all values of x that can be used in a function (the input values)

- The domain of a quadratic function is the set of all real numbers because any real number can be used for x.
Range: the set of all values of $y(\operatorname{or} f(x))$, that are the output values of the function for the values of the domain.
- If the vertex of a quadratic function is a minimum, the range is the values of $y \geq$ the y value of the vertex
- If the vertex of a quadratic function is a maximum, the range is the values of $y \leq$ the y value of the vertex

Objective: Identify Key Features of a Quadratic Function.
Ex) Determine the domain and range for each quadratic function. Write as an inequality and as an interval.

Domain: $\frac{\infty<x<{ }^{+} \infty}{\text { (inequality) }} \frac{(-\infty,+\infty)}{\text { (interval) }}$
Range:

Objective: Identify Key Features of a Quadratic Function.

Note: Increasing and decreasing intervals are always determined by reading the graph of the function from left to right.

Increasing interval: the set of all values of x for which the values of the function, $f(x)$, are getting larger (increasing)
decreasing interval: the set of all values of x for which the values of the function, $f(x)$, are getting smaller (decreasing)

$$
\begin{array}{ll|ll}
\text { decreasing: } x<-1 & \text { increasing: } x>-1 & \text { increasing: } x<-1 \quad \text { decreasing: } x>-1
\end{array}
$$

Objective: Identify Key Features of a Quadratic Function.
Ex) Determine where each quadratic function is increasing and decreasing.

Increasing:

Decreasing:

Increasing: $\frac{x>-4}{\text { (inequality) }} / \frac{(-4,+\infty)}{\text { (interval) }}$
Decreasing: $\frac{x<-4}{\text { (inequality) }} \quad(-\infty,-4)$

Objective: Identify Key Features of a Quadratic Function.

Closure

At what value of x does a quadratic function change from increasing to decreasing or from decreasing to increasing?

A quadratic function changes from increasing to decreasing or from decreasing to increasing at the value of x that is the x-coordinate of the vertex.

