Objective: Find the surface area of cones

Concept

Surface Area of a Cone

The surface area, \boldsymbol{S}, of a cone is equal to the sum of the area of the sector, L, and the area of the circular base, B.

$$
\begin{gathered}
S=L+B \\
\boldsymbol{S}=\pi r \ell+\pi r^{2}
\end{gathered}
$$

Where B is the area of the circular base and L is the area of the side of the cone, called a sector.

Objective: Find the surface area of cones

Concept

Steps to find the Surface Area of a Cone

1. Find the radius, r, of the circular base.
2. Find the slant height, ℓ, of the cone.
3. Find the surface area: $S=L+B \rightarrow S=\pi r \ell+\pi r^{2}$

The Lateral Area of a cone is the area of the \qquad side of the cone

To find the Lateral Area of the a cone, use: \qquad .

Objective: Find the surface area of cones

Ex) A company packages popcorn in containers in the shape of a right cone. Each container will be wrapped completely in cellophane, side and top. Estimate the amount of cellophane needed to wrap each container. Round to the nearest tenth of a square centimeter.

$$
\begin{aligned}
* \text { Total } & \text { Surface Area } \\
S & =L+B \\
S & =\pi r l+\pi r^{2}
\end{aligned}
$$

(1) find r and l
(a) $r=12 \mathrm{~cm}$
(b) $l=$

$$
\begin{aligned}
& r^{2}+h^{2}=l^{2} \\
& 12^{2}+16^{2}=l^{2} \\
& \sqrt{12^{2}+16^{2}}=\sqrt{l}^{2} \\
& l=\sqrt{12^{2}+16^{2}} \\
& l=20 \mathrm{~cm}
\end{aligned}
$$

(2)
2) surface
tea $=S=\pi r l+\pi r^{2}$
$S=\pi(12 \mathrm{~cm})(20 \mathrm{~cm})+\pi(12 \mathrm{~cm})^{2}$
$\approx 1206.4 \mathrm{~cm}^{2}$

Objective: Find the surface area of cones
Ex) Shelley plans to make eight conical party hats for her niece's birthday party. She wants each hat to be 18 inches tall and the bases of each to be 9 inches in diameter. How much material will she use to make the hats to the nearest square inch?

* lateral area

A

$$
L=\pi r l
$$

(1) find r and l
(a) $r=\frac{\text { diameter }}{2}=\frac{9 i n}{2}=4.5 \mathrm{in}$
(b) $l=$?

$$
\begin{aligned}
& \text { (b) } l=? \\
& r^{2}+h^{2}=l^{2} \quad h=18 \mathrm{in} \\
& 4.5^{2}+18^{2}=l^{2} \quad \frac{7}{r=4.5 \mathrm{in}} \\
& l=\sqrt{4.5^{2}+18^{2}} \\
& l \approx 18.55 \mathrm{in}
\end{aligned}
$$

(2) Lateral area for 1 hat

$$
\begin{aligned}
L=\pi r l \rightarrow L & =\pi(4.5 \mathrm{in})(18.55 \mathrm{in}) \\
L & \approx 262 \mathrm{in}^{2}
\end{aligned}
$$

(3) $262 \mathrm{in}^{2} \times 8$ hats

$$
\approx 2096 \mathrm{in}^{2}
$$

(4) Shelley will need about 2096 square inches of material to make 8 party hats.

Objective: Find the surface area of cones

Closure

Explain the difference between the height of a cone and the slant height of a cone.

The height is the perpendicular/vertical distance from the base to its apex.
The slant height is the length of the side of the cone.

