Objective: Find holes, asymptotes, and intercepts of rational functions.

Concept

Holes: If the numerator and denominator of a rational function have a common factor, a hole is created in the graph for the value of x that makes the common factor equal to 0 . This is called a point of discontinuity and is represented as an open circle at the corresponding point in the curve.
$f(x)=\frac{x^{2}+3 x-4}{x^{2}+2 x-3} \rightarrow f(x)=\frac{(x+4)(x-1)}{(x+3)(x-1)} \rightarrow f(x)=\frac{x+4}{x+3}$ with a hole at $(1,1.25)$

Objective: Find holes, asymptotes, and intercepts of rational functions.

Concept

Steps to Find Holes of Rational Functions

1. Given a function of the form $f(x)=\frac{p(x)}{q(x)}$, factor both numerator and denominator completely. Reduce common factors.
2. Find the x-coordinate of the hole: There will be a hole at the x-value where the common factor(s) equal 0 .
3. Find the y-coordinate of the hole: Plug the hole's x-value into the simplified function.

$$
\begin{aligned}
& f(x)=\frac{x^{2}+3 x-4}{x^{2}+2 x-3} \rightarrow f(x)=\frac{(x+4)(x-1)}{(x+3)(x-1)} \rightarrow f(x)=\frac{x+4}{x+3} \\
& x \text {-coordinate: } x-1=0 \rightarrow x=1 \\
& y \text {-coordinate: } f(1)=\frac{1+4}{1+3}=\frac{5}{4}=1.25
\end{aligned}
$$

The hole is at $(1,1.25)$

Objective: Find holes, asymptotes, and intercepts of rational functions.

Concept

Steps to Find Asymptotes of Rational Functions

1. Given a function of the form $f(x)=\frac{p(x)}{q(x)}$, factor both numerator and denominator completely. Reduce common factors.
2. Find All Vertical Asymptotes: Using the simplified function, set factors in the denominator equal to 0 and solve for x.
3. Find the Horizontal Asymptote: Use the original or simplified function.
a. Take the ratio of the first terms of the numerator and denominator.
b. Reduce.
c. Result is $\frac{c}{x} \rightarrow y=0$

Result is $c \rightarrow y=c$

Objective: Find holes, asymptotes, and intercepts of rational functions.

Concept

Finding zeros $/ x$-intercepts and the y-intercept of Rational Functions

1. Use the simplified form of the function.
2. To find zeros $/ x$-intercepts, let $y=0$ and solve for x, because the x-intercepts (zeros) are values of x that produce a y-value of 0 .
3. To find the y-intercept, let $x=0$ and solve for y, because the y-intercept is the point where the function intersects the y-axis.

Objective: Find holes, asymptotes, and intercepts of rational functions.

Objective: Find holes, asymptotes, and intercepts of rational functions.
Example)
hole (point of discontinuity): \qquad none

$$
f(x)=\frac{2 x+1}{x-3}
$$

simplified function
(1) hole
no common factor
horizontal asymptote: \qquad $u=2$
\qquad y-intercept: $\quad(0,-1 / 3)$
(2) vertical asym.

$$
\begin{aligned}
& x-3=0 \\
& * x=3
\end{aligned}
$$

(3) \$horiz. asy.
(4) zero

$$
\frac{2 x}{x}=2 \rightarrow y=2
$$

$x=$? when $y=0$
(5) $y-\ln t$.

$$
\begin{aligned}
\underbrace{f(x)} & =\frac{2 x+1}{x-3} \\
x-3 \cdot 0 & =\frac{2 x+1}{x-3} \cdot x-3
\end{aligned}
$$

if $x=0, y=$?

$$
f(0)=\frac{2(0)+1}{0-3}=\frac{1}{-3}=\frac{-1}{3}
$$

$$
-1=2 x
$$

$$
x=-\frac{1}{2} \text { zero }
$$

Objective: Find holes, asymptotes, and intercepts of rational functions.

Example)

$$
f(x)=\frac{x-4}{x^{2}-4 x+3}
$$

(1) simp. function

$$
f(x)=\frac{x-4}{(x-3)(x-1)}
$$

(2) hole
no common factor
= no hole
(4) Moriz asy.
(5) ${ }^{\text {(}}$ zero

$$
\frac{x}{x^{2}}=\frac{1}{x} \rightarrow y=0
$$

(3) vert. asy.

$$
\begin{array}{cc}
x-3=0, & x-1=1 \\
x=3 & x=1
\end{array}
$$

$x=$? when $y=0$

$$
f(x)=\frac{x-4}{(x-3)(x-1)}
$$

(6) $* y$-int.
if $x=0, y=$?

$$
f(0)=\frac{0-4}{0^{2}-4(0)+3}=\frac{-4}{3}
$$

$$
(0,-4 / 3)^{p}
$$

Objective: Find holes, asymptotes, and intercepts of rational functions.

$$
\begin{array}{ll}
\text { Example) } & \text { vertical asymptotes): } \frac{x=-5}{\sqrt{x+5}} \\
\left.f(x)=\frac{x^{2}-9}{\sqrt{x+i n t e r c e p t:}\left(0, \frac{-9 \sqrt{5}}{5}\right.}\right)
\end{array}
$$

simplified function
(1) vert. asym.

$$
\begin{aligned}
& \sqrt{x+5}=0 \\
& (\sqrt{x+5})^{2}=0^{2}
\end{aligned}
$$

(2) y-int.

$$
\begin{aligned}
& \text { if } x=0, y=? \\
& \begin{aligned}
f(0)=\frac{0^{2}-9}{\sqrt{0+5}}= & \frac{-9}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \quad x+5=0 \\
& =\frac{-9 \sqrt{5}}{\sqrt{25}}=\frac{-9 \sqrt{5}}{5} \\
& \left(0, \frac{-9 \sqrt{5}}{5}\right)
\end{aligned}
\end{aligned}
$$

