Objective: Find the inverse of an exponential function

Concept

The inverse of a function or relation is the set of ordered pairs (b, a) obtained by interchanging (switching) the coordinates of each point (a, b) in the original relation or function.

For inverse functions, if $f(x)$ is the original function, then $f^{-1}(x)$ is the inverse function. $f^{-1}(x)$ is read "the inverse of $f(x)$ " or " f inverse of x ".

Because x and y coordinates are interchanged to create the inverse of a function, the domain of the function becomes the range of the inverse and the range of the function becomes the domain of the inverse.

Objective: Find the inverse of an exponential function

Concept

The graph of a function or relation and its inverse will always be reflections of each other over the line $y=x$. All points of intersection between a function or relation and its inverse will be on the line $\mathrm{y}=x$.

Objective: Find the inverse of an exponential function
Concept
The inverse of an exponential function is a logarithmic function.

Steps to Find the Inverse Function of an Exponential Function

1. Change the function notation to y.
2. Interchange (switch) the x and y variables. Do not move any numbers or other symbols.
3. Use algebra to solve for the y variable.
a. Isolate the power expression.
b. Write in logarithmic form.
c. Solve for the y variable, if necessary.
4. Rewrite the y variable using inverse notation.

Objective: Find the inverse of an exponential function
Ex) Find the inverse of each function.

$$
f(x)=e^{x+3}
$$

(1)

$$
y=e^{x+3}
$$

(2) (2) $x=e^{y+3}$
(3) (b) $\log _{e} x=y^{+3}$

Objective: Find the inverse of an exponential function
Ex) Find the inverse of each function.

$$
g(x)=2(10)^{x-5}
$$

(1) $y=2(10)^{x-5}$
(2) $\frac{x}{2}=\frac{2(10)^{y}}{2}$
(3) $\frac{x}{2}=(10)^{y-5}$

(c) \quad| $\quad \log \frac{x}{2}$ | $=y-5$ |
| ---: | :--- |
| +5 | +5 |

$$
y=\log \frac{x}{2}+5
$$

(4) $g^{-1}(x)=\log \frac{x}{2}+5$

$$
g^{-1}(x)=\log \left(\frac{x}{2}\right)+5
$$

Objective: Find the inverse of an exponential function
Ex) Find the inverse of each function.

$$
\begin{aligned}
& k(x)=e^{3 x}+5 \\
& y=e^{3 x}+5
\end{aligned}
$$

(2) $\begin{aligned} & x=e^{3 y}+5 \\ & -5\end{aligned}$
(a)
(3)

$$
\frac{x-5}{1}=e^{3 y}
$$

(b) $\log _{e}(x-5)=3 y$
(c) $\frac{1}{3} \ln (x-5)=\frac{3 y}{3}$

$$
y=\frac{1}{3} \ln (x-5)
$$

(4) $\quad k^{-1}(x)=\frac{1}{3} \ln (x-5)$

Acc Math 3 Find the Inverse of an Exponential Function.gwb - Monday, February 05, 2018 - Page 7 of 8

Objective: Find the inverse of an exponential function
Ex) Find the inverse of each function.
$p(x)=7(2)^{5 x+8}-3$
(1) $y=7(2)^{5 x+8}-3$
(2)

$$
\begin{aligned}
& x=7(2)^{5 y+8}-3 \\
& +3
\end{aligned}+3
$$

(a) $\frac{+3}{5 y+8}$
(3)

$$
\begin{aligned}
& \frac{x+3}{7}=\frac{7(2)^{5 y+8}}{7} \\
& \frac{x+3}{7}=2^{5 y+8}
\end{aligned}
$$

(b) $\log _{2} \frac{x+3}{7}{\underset{-8}{ }}=5 y+8$

(4)

$$
\begin{aligned}
& P^{-1}(x)=\frac{1}{5} \log _{2} \frac{x+3}{7}-\frac{8}{5} \\
& P^{-1}(x)=\frac{1}{5} \log _{2}\left(\frac{x+3}{7}\right)-\frac{8}{5}
\end{aligned}
$$

Objective: Find the inverse of an exponential function

Closure

Find the inverse of the logarithmic function $f(x)=\log (x+4)$.

$$
\begin{aligned}
& y=\log _{10}(x+4) \\
& x=\log _{10}(y+4) \\
& 10^{x}=y+4 \\
& y=10^{x}-4 \\
& f^{-1}(x)=10^{x}-4
\end{aligned}
$$

