Objective: Simplify Numerical Expressions with Rational Exponents

Concept

Rational and irrational numbers expressed in radical form can also be expressed with fractional exponents. When the number has a fractional exponent, it is said to be in rational exponent form.

$$
\frac{b^{\frac{1}{n}}=\sqrt[n]{b}}{\text { and }}
$$

$\boldsymbol{b}^{\frac{p}{n}}=\sqrt[n]{\boldsymbol{b}^{p}}$ or $\boldsymbol{b}^{\frac{p}{n}}=(\sqrt[n]{\boldsymbol{b}})^{p}$

Objective: Simplify Numerical Expressions with Rational Exponents

Concept

Properties of Rational Exponents

For all nonzero real numbers a and b and rational numbers m and n

Words	Numbers	Algebra
Product of Powers Property: to multiply powers with the same base, add the exponents	$12^{\frac{1}{2}} \cdot 12^{\frac{3}{2}}=12^{\frac{1}{2}+\frac{3}{2}}=12^{2}=144$	$a^{m} \cdot a^{n}=a^{m+n}$
Quotient of Powers Property: to divide powers with the same base, subtract the exponents	$\frac{125^{\frac{2}{3}}}{125^{\frac{1}{3}}}=125^{\frac{2}{3}-\frac{1}{3}}=125^{\frac{1}{3}}=5$	$\frac{a^{m}}{a^{n}}=a^{m-n}$ or $\frac{a^{m}}{a^{n}}$
$=\frac{1}{a^{n-m}}$		
Power of a Power Property: to raise one power to another, multiply the exponents	$\left(8^{\frac{2}{3}}\right)^{3}=8^{\frac{2}{3} \cdot 3}=8^{2}=64$	$\left(a^{m}\right)^{n}=a^{m \cdot n}$
Power of a Product Property: to find a power of a product, distribute the exponent	$(16 \cdot 25)^{\frac{1}{2}}=16^{\frac{1}{2}} \cdot 25^{\frac{1}{2}}=4 \cdot 5$	$(a b)^{m}=a^{m} b^{m}$
Power of a Quotient Property: to find a power of a quotient, distribute the exponent	$\left(\frac{16}{81}\right)^{\frac{1}{4}}=\frac{16^{\frac{1}{4}}}{81^{\frac{1}{4}}}=\frac{2}{3}$	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$

Objective: Simplify Numerical Expressions with Rational Exponents

Concept

Properties of Rational Exponents

For all nonzero real numbers a and b and rational numbers m and n

Words	Numbers	Algebra
Negative Exponent Property: moving a power from numerator to denominator or vice versa changes the sign on the exponent	$36^{-\frac{1}{2}}=\frac{1}{36^{\frac{1}{2}}}=\frac{1}{6}$	$a^{-n}=\frac{1}{a^{n}}$ or $\frac{1}{a^{-n}}=a^{n}$
Zero Exponent Property: any monomial to a power of O is equal to 1	$\frac{1}{36^{-\frac{1}{2}}}=\frac{36^{\frac{1}{2}}}{1}=\frac{6}{1}=6$	$(a)^{0}=1$

Objective: Simplify Numerical Expressions with Rational Exponents
Ex) Simplify each numerical value as much as possible.

$$
\begin{aligned}
& (125)^{\frac{4}{3}} \\
& =125^{4 / 3 \text { index }} \\
& =(\sqrt[3]{125})^{4} \\
& \begin{array}{l}
=5^{4} \\
=625
\end{array} \\
& =\frac{6(3)^{-3}}{(2)^{-3}}=\frac{2^{3}}{3^{3}} \\
& =\frac{8}{27}
\end{aligned}
$$

Objective: Simplify Numerical Expressions with Rational Exponents

Ex) Simplify each numerical value as much as possible.

$$
\begin{aligned}
\text { product of } & 25^{\frac{3}{5}} \cdot 25^{\frac{7}{5}} \\
\text { powers } & =25^{\frac{3}{5}}+\frac{7}{5} \\
& =25^{\frac{10}{5}} \\
& =25^{2} \\
& =62^{5}
\end{aligned}
$$

Objective: Simplify Numerical Expressions with Rational Exponents
Ex) Simplify each numerical value as much as possible.

Acc Math 3 Simplify Numerical Expressions with Rational Exponents.gwb - Wednesday, November 08, 2017 - Page 7 of 8

Objective: Simplify Numerical Expressions with Rational Exponents
Ex) Simplify each numerical value as much as possible.

$$
\begin{aligned}
& \text { power of a } \\
& \text { power }\left(32^{\frac{4}{3}}\right)^{-\frac{3}{5}} \\
&=32^{\frac{4}{3,} \cdot \frac{-\frac{-1}{5}}{5}} \\
&=\left(\frac{5}{32}\right)^{\frac{-4}{5}}=\frac{1}{2} \\
& \frac{1}{2}
\end{aligned}
$$

Objective: Simplify Numerical Expressions with Rational Exponents

Closure

Darlene simplified an expression with rational exponents. Her work is shown. Identify the step where Darlene made a mistake. What was her mistake and what is the correct answer?

$$
\begin{array}{lc}
\text { simplify } & 8^{\frac{5}{12}} \cdot 8^{\frac{1}{4}} \\
\text { step } 1: & 8^{\frac{5}{12}} \cdot 8^{\frac{3}{12}} \\
\text { step } 2: & 64^{\frac{8}{12}} \\
\text { step } 3: & 64^{\frac{2}{3}} \\
\text { step } 4: & (\sqrt[3]{64})^{2} \\
\text { step } 5: & (4)^{2} \\
\text { step } 6: & 16
\end{array}
$$

Darlene made a mistake in step 2 . She shouldn't have multiplied the 8 s . The correct answer is 4 .

$$
\begin{array}{lc}
\text { simplify } & 8^{\frac{5}{12}} \cdot 8^{\frac{1}{4}} \\
\text { step } 1: & 8^{\frac{5}{12}} \cdot 8^{\frac{3}{12}} \\
\text { step } 2: & 8^{\frac{8}{12}} \\
\text { step } 3: & 8^{\frac{2}{3}} \\
\text { step } 4: & (\sqrt[3]{8})^{2} \\
\text { step } 5: & (2)^{2} \\
\text { step } 6: & 4
\end{array}
$$

