Concept

Rational and irrational numbers expressed in radical form can also be expressed with fractional exponents. When the number has a fractional exponent, it is said to be in <u>rational exponent</u> form.

$$b^{\frac{1}{n}} = \sqrt[n]{b}$$

anc

$$b^{\frac{p}{n}} = \sqrt[n]{b^p} \text{ or } b^{\frac{p}{n}} = \left(\sqrt[n]{b}\right)^p$$

Concept

Properties of Rational Exponents

For all nonzero real numbers a and b and rational numbers m and n

Words	Numbers	Algebra
Product of Powers Property: to multiply powers with the same base, add the exponents	$12^{\frac{1}{2}} \cdot 12^{\frac{3}{2}} = 12^{\frac{1}{2} + \frac{3}{2}} = 12^2 = 144$	$a^m \cdot a^n = a^{m+n}$
Quotient of Powers Property: to divide powers with the same base, subtract the exponents	$\frac{125^{\frac{2}{3}}}{125^{\frac{1}{3}}} = 125^{\frac{2}{3} - \frac{1}{3}} = 125^{\frac{1}{3}} = 5$	$\frac{a^m}{a^n} = a^{m-n} \text{ or } \frac{a^m}{a^n}$ $= \frac{1}{a^{n-m}}$
Power of a Power Property: to raise one power to another, multiply the exponents	$\left(8^{\frac{2}{3}}\right)^3 = 8^{\frac{2}{3} \cdot 3} = 8^2 = 64$	$(a^m)^n = a^{m \cdot n}$
Power of a Product Property: to find a power of a product, distribute the exponent	$(16 \cdot 25)^{\frac{1}{2}} = 16^{\frac{1}{2}} \cdot 25^{\frac{1}{2}} = 4 \cdot 5$ $= 20$	$(ab)^m = a^m b^m$
Power of a Quotient Property: to find a power of a quotient, distribute the exponent	$\left(\frac{16}{81}\right)^{\frac{1}{4}} = \frac{16^{\frac{1}{4}}}{81^{\frac{1}{4}}} = \frac{2}{3}$	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

Concept

Properties of Rational Exponents

For all nonzero real numbers a and b and rational numbers m and n

Words	Numbers	Algebra
Negative Exponent Property: moving a power from numerator to denominator or vice versa changes the sign on the exponent	$36^{-\frac{1}{2}} = \frac{1}{36^{\frac{1}{2}}} = \frac{1}{6}$ $\frac{1}{36^{-\frac{1}{2}}} = \frac{36^{\frac{1}{2}}}{1} = \frac{6}{1} = 6$	$a^{-n} = \frac{1}{a^n} \text{ or } \frac{1}{a^{-n}} = a^n$
Zero Exponent Property: any monomial to a power of 0 is equal to 1	$(3)^0 = 1$	$(a)^0 = 1$

$$(125)^{\frac{4}{3}}$$
 exponent $= 125$
 $= (3)^{\frac{4}{3}}$ index
 $= 5$

$$=\frac{\left(\frac{81}{16}\right)^{-\frac{3}{4}}}{\left(\frac{81}{16}\right)^{-\frac{3}{4}}}$$

$$=\frac{\left(\frac{81}{16}\right)^{-\frac{3}{4}}}{\left(\frac{4}{16}\right)^{-\frac{3}{4}}}$$

$$=\frac{\left(\frac{4}{16}\right)^{-\frac{3}{4}}}{\left(\frac{4}{16}\right)^{-\frac{3}{4}}}$$

$$=\frac{\left(\frac{3}{16}\right)^{-\frac{3}{4}}}{\left(\frac{4}{16}\right)^{-\frac{3}{4}}}$$

$$=\frac{\left(\frac{3}{16}\right)^{-\frac{3}{4}}}{\left(\frac{4}{16}\right)^{-\frac{3}{4}}}$$

$$=\frac{\left(\frac{3}{16}\right)^{-\frac{3}{4}}}{\left(\frac{4}{16}\right)^{-\frac{3}{4}}}$$

$$=\frac{\left(\frac{3}{16}\right)^{-\frac{3}{4}}}{\left(\frac{3}{16}\right)^{-\frac{3}{4}}}$$

$$25\frac{3}{5} \cdot 25\frac{7}{5}$$

$$product of$$

$$powers$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$= 25$$

$$\frac{8^{\frac{1}{2}}}{8^{\frac{1}{6}}}$$

$$\frac{3}{3} \cdot \frac{1}{2} - \frac{5}{6}$$

$$= 8$$

$$= 2/6 = 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

$$= 8$$

Closure

Darlene simplified an expression with rational exponents. Her work is shown. Identify the step where Darlene made a mistake. What was her mistake and what is the correct answer?

simplify $8^{\frac{5}{12}} \cdot 8^{\frac{1}{4}}$

step 1: $8^{\frac{5}{12}} \cdot 8^{\frac{3}{12}}$

step 2: $64^{\frac{8}{12}}$

step 3: $64^{\frac{2}{3}}$

step 4: $\left(\sqrt[3]{64}\right)^2$

step 5: $(4)^2$

step 6: 16

Darlene made a mistake in step 2. She shouldn't have multiplied the 8s. The correct answer is 4.

simplify
$$8^{\frac{5}{12}} \cdot 8^{\frac{1}{4}}$$

step 1:
$$8^{\frac{5}{12}} \cdot 8^{\frac{3}{12}}$$

step 2:
$$8^{\frac{8}{12}}$$

step 3:
$$8^{\frac{2}{3}}$$

step 4:
$$(\sqrt[3]{8})^2$$

step 5:
$$(2)^2$$