Objective: Solve context problems using logarithms.

Concept

Steps to Solve an Exponential Equation Using Logarithms

1. Write the equation with a single power on each side.
2. Take the logarithm of both sides. (Common Logarithm or Natural Logarithm)
3. Use the Power Property of Logarithms: $\log _{b} a^{x}=x \log _{b} a$
4. Solve this equation using algebra. Approximate if necessary.
5. State the solution to the exponential equation. Interpret in terms of the context.

Objective: Solve context problems using logarithms.
Ex) Emily deposits $\$ 250$ into an account that pays 4.5% compounded quarterly. The formula $A=P(1.01125)^{4 t}$ gives the amount A in the account after t years for an initial investment P.
a) What is the balance of the account after 8 months?

$$
\begin{aligned}
A=? \text { when } t & =8 m_{0} \\
& =\frac{\delta n \sigma}{1} \cdot \frac{1 y r}{12 y 0} \\
t & =\frac{8}{12} \mathrm{yr} \\
A & =250(1.01125)^{(4 \cdot 8 / 12)} \\
& =\$ 257.57
\end{aligned}
$$

The balance of the account after 8 months is $\$ 257.57$.
b) How long it will take, in years and months, for the balance in the account to double? Round to the nearest month.

$$
\begin{gathered}
t=? \text { when } A \text { doubles } \\
A=2(250)=500 \\
\frac{500}{250}=\frac{250(1.01125)^{4 t}}{250}
\end{gathered}
$$

$$
2=1.01125^{4 t}
$$

$$
\begin{aligned}
& 2=1.01125 \\
& \ln 2=\ln 1.01125
\end{aligned}
$$

$$
\frac{\ln 2}{(4 \cdot \ln 1.01125)}=\frac{4 t \cdot \ln 1.11125}{(4 \cdot \ln 1.01125)}
$$

$$
\begin{aligned}
t=\frac{\ln (2)}{(4 \cdot \ln (1.0125))} & =15.489 \ldots \mathrm{yrs} \\
& =15 \mathrm{yr} \frac{.489 \ldots 9 \cdot \frac{120}{1 y^{2}}}{}
\end{aligned}
$$

$\approx 15 \mathrm{yr} 6 \mathrm{mo}$
The balance in the account will double in about 15 years 6 months.

Objective: Solve context problems using logarithms.
Ex) Ajay made a steaming pot of stew. When the temperature of the stew reached $70^{\circ} \mathrm{C}$, Ajay turned the stove off and the stew began cooling. The temperature, T (measured in degrees Celsius), of the stew, m minutes since Ajay turned the stove off can be modeled by the function $T(m)=20+50(10)^{-0.04 m}$.
a) How long, to the nearest minute, did it take the stew to reach a temperature of $43^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& m=? \text { when } T=43^{\circ} \mathrm{C} \\
& T=20+50(10)^{-.04 m} \\
& 43=20+50(10)^{-.04 m} \\
& -20-20
\end{aligned}
$$

$$
\frac{23}{50}=\frac{50(10)^{-.04 m}}{50}
$$

$0.46=10^{-.04 m}$
$\log 0.46=\overparen{\log 10.04 m}$
$\log 0.46=-\begin{gathered}-0.04 m(\log 10) \\ -0.04 m \cdot 1 \\ \log _{10} 10=1\end{gathered}$
$\frac{\log 0.46}{-0.04}=\frac{-0.04 m}{-0.04}$
$m \approx 8.43 \ldots$ minutes
$\approx 8 \mathrm{~min}$
The stew reaches $43^{\circ} \mathrm{C}$ in about 8 minutes.
b) What is the temperature of the stew, to the nearest degree, after 5 minutes?

$$
\begin{aligned}
T & =? \text { when } m=5 \mathrm{~min} \\
T & =20+50(10) \\
& =51.547 \ldots{ }^{\circ} \mathrm{C} \\
& \approx 52^{\circ} \mathrm{C}
\end{aligned}
$$

After 5 minutes, the temperature of the stew is about $52^{\circ} \mathrm{C}$.

Objective: Solve context problems using logarithms.
Ex) A biologist in Nepal is studying the local population of red pandas, a vulnerable species that may soon be endangered. The biologist has determined that the number of red pandas, P, in the local population t years since the species has been monitored can be modeled by the function $P(t)=800 e^{0.0416 t}$. When, to the nearest tenth of a year, will the red panda population in this area reach 2000?

$$
\begin{aligned}
& t=? \text { when } P=2000 \\
& P=800 e^{0.0416 t} \\
& \frac{2000}{800}=\frac{800 e^{0.0416 t}}{800} \\
& 2.5=e^{0.0416 t} \\
& \ln 2.5=\ln e^{0.0416 t} \\
& \ln 2.5=0.0416 t \cdot \frac{\ln e}{1} \\
& \frac{\ln 2.5}{0.0416}=\frac{0.0416 t}{0.0416}
\end{aligned}
$$

$$
\begin{aligned}
t & =\frac{\ln 2.5}{0.0416} \\
& \approx 22.0 \mathrm{yr}
\end{aligned}
$$

The red panda population in this area will reach 2000 in about 22.0 years.

Objective: Solve context problems using logarithms.
Ex) The distance an object travels in feet is modeled by the function $d(m)=17 \ln (3 m+6)$, where m is in minutes. What is the average speed of the object during the first 5 minutes the object is in motion? Round to three decimal places. \downarrow
AROC. from 0 to 5 min

$$
\frac{\Delta d}{\Delta m}=\frac{(17 \ln (21) \mathrm{ft}-17 \ln (6) \mathrm{ft})}{(5 \mathrm{~min}-0 \mathrm{~min})} \approx 4.259 \mathrm{ft} / \mathrm{min}
$$

The object's average speed during the first 5 minutes of motion is about 4.259 feet per minute.

Objective: Solve context problems using logarithms.

Closure

Determine which type of logarithm is best to use when solving each of the following equations.

1) $70=45 e^{0.056 t}$
b) Natural Logarithm
2) $70=10+45(3.2)^{0.056 t}$
c) Neither is best, either can be used
3) $70=45(10)^{0.056 t}$
a) Common Logarithm
a) Common Logarithm
b) Natural Logarithm
c) Neither is best; either can be used
d) Logarithms aren't needed to solve the equation
