Concept

Electrical engineers use complex numbers when analyzing electric circuits. An electric circuit commonly contains three types of components: resistors, inductors, and capacitors. As electrons flow through the circuit, each component affects the flow in a different way. The impedance (measured in ohms, Ω) is the resistance to the flow of electrons in an AC circuit.

The table shows the symbol used for each component in a circuit diagram, the phase angle, and the method for representing the impedance of that component as a complex number.

Circuit component	Symbol in circuit diagram	Phase angle	Representation by a complex number
Resistor	-	0*	A real number a
Inductor	—/coor—	90°	An imaginary number b / where $b > 0$
Capacitor		-90°	An imaginary number bi where $b < 0$

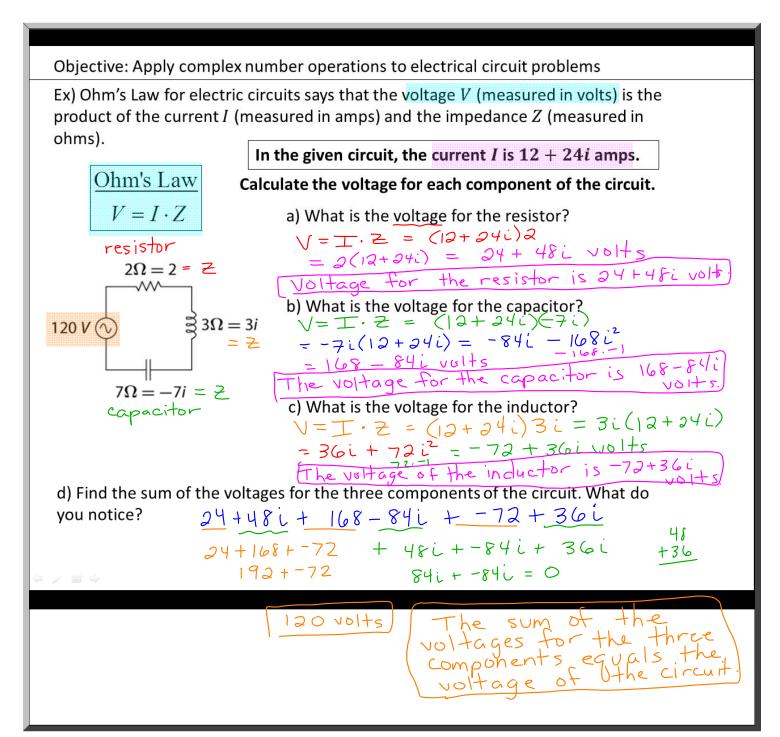
Ex) The diagram of an alternating current (AC) electric circuit is shown, with the impedance of each component. An AC power source, which is shown on the left and labeled 120 V (for volts), causes electrons to flow through the circuit.

resistor Represent the impedance of each component as a complex number.

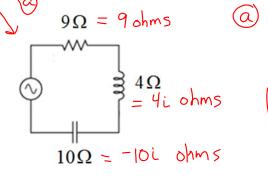
 $2\Omega = 2$ ohms a) Impedance of the capacitor = $\frac{-7i}{2}$ ohms.

120 $V \odot$ inductor 3Ω = 3i. 6

- b) Impedance of the resistor = $\frac{Q}{N}$ ohms.
- c) Impedance of the inductor = $\frac{3i}{6}$ shms.


 $7\Omega = -7i$ ohms d) The total impedance of a circuit is the sum of the capacitor impedances of its components. The total impedance of the AC circuit is 2-4i ohms.

Circuit component	Symbol in circuit diagram	Phase angle	Representation by a complex number
Resistor	-\\\\-	0°	A real number a
Inductor		90°	An imaginary number bi where $b>0$
Capacitor	- -	-90°	An imaginary number bi where $b < 0$


total impedance

-7i + 2 + 3i

2 - 4i ohms

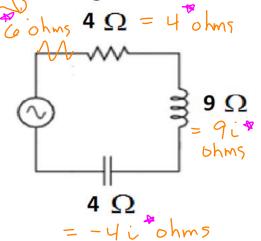
- Ex) The current of the AC electric circuit in the diagram is measured as 6 + 4i amps.
- A) What is the total impedance of the circuit?
- B) What is the total voltage of the circuit?

60hm's Law

Voltage = Current. Impedance

$$V = I \cdot Z$$
 $V = (6 + 4i)(9 - 6i)$

78 volts.


$$V = T \cdot Z$$

$$V = (6+4i)(9-6i)$$
The total voltage of the circuit is
$$54 - 36i + 36i - 34i^{2}$$

$$78 \text{ volts.}$$

$$= 78 \text{ volts}$$

- Ex) A second resistor is added to the circuit shown in the diagram. The second resistor has an impedance of 6 ohms.
- A) What is the total impedance of the circuit?
- B) If the current of the circuit is measured as 16 8i amps, what is the total voltage of the circuit?

a
$$6+4+9i+-4i=10+5i$$
 ohms
The total impedance is
 $10+5i$ ohms.

= 200 voits The total voitage is 200 voits.