Objective: Factor binomials of higher degree completely

Concept

Factoring Binomials

1. Factor out any GCF; (remember this can be a numerical and/or variable factor)
2. Check for a special pattern
3. Difference of Two Squares: $(a)^{2}-(b)^{2}$
4. Sum of Two Cubes: $(a)^{3}+(b)^{3}$
5. Difference of Two Cubes: $(a)^{3}-(b)^{3}$

Objective: Factor binomials of higher degree completely

Concept

Factoring Binomials with Special Patterns

Sum of Two Cubes
$(x)^{3}+(y)^{3}$
\downarrow
$(x+y)\left((x)^{2}-x y+(y)^{2}\right)$

Remember: SOAP = same sign, opposite sign, always positive!

Difference of Two Cubes
$(x)^{3}-(y)^{3}$
\downarrow
$(x-y)\left((x)^{2}+x y+(y)^{2}\right)$

Difference of Two Squares

$$
\begin{gathered}
(x)^{2}-(y)^{2} \\
\downarrow \\
(x-y)(x+y) \\
\hline
\end{gathered}
$$

Objective: Factor binomials of higher degree completely
Ex) Factor each polynomial completely.

$$
3 x^{3}-24
$$

(1)gcf
(2) Diff.
of two cubes

$$
\begin{aligned}
& 3\left(x^{3}-8\right) \\
& (x)^{3}-(2)^{3}
\end{aligned}
$$

"SOAP"

$$
\begin{aligned}
& 3\left(x-\frac{1}{5} 2\right)\left((x)^{2}\right)+\left((x)(2)+\left((2)^{2}\right)\right) \\
& 3(x-2)\left(x^{2}+2 x+4\right)
\end{aligned}
$$

Objective: Factor binomials of higher degree completely
Ex) Factor each polynomial completely.

$$
54 x^{4}+2 x
$$

Objective: Factor binomials of higher degree completely

Ex) Factor each polynomial completely.

Objective: Factor binomials of higher degree completely

Ex) Factor each polynomial completely.

$$
x^{3}+46
$$

(1) $g c f=1$

Objective: Factor binomials of higher degree completely
Ex) Factor each polynomial completely.

$$
64 x^{3} y-125 y^{4}
$$

(1) $g c f$
(2) Diff. of $(4 x)^{3}-(5 y)^{3}$ two cubes

$$
y(4 x-5 y)\left(\left(4 x^{3}\right)^{2}+(4 \times(5 y)+(5 y)\right.
$$

(4) (b) (B) (a) @

Objective: Factor binomials of higher degree completely

Ex) Factor each polynomial completely.

$$
3 x^{5}-27 x
$$

(1) get
(2) Diff.
of two

(3) check for

Objective: Factor binomials of higher degree completely

Ex) Factor each polynomial completely.

$$
x^{4}-625 y^{4}
$$

(1) $g c f=1$
(2) Diff. of two squares
(3) Another Diff. of two squares

$$
\frac{\downarrow}{\left(x^{2}+25 y^{2}\right)(x+5 y)(x-5 y)}
$$

Objective: Factor binomials of higher degree completely

Ex) Factor each polynomial completely.

(2) not a
special
binomial

