

Objective: Use Vertex Form to solve problems in context.

Solve without graphing. Round to the nearest hundredth if necessary.

- Ex) A rock is knocked off a cliff into a river. The function $h(t) = -16t^2 + 40$ models the height of the rock, in feet, after t seconds.
- c) When will the rock reach a height of 10 feet?

$$h(t) = -16t^2 + 40$$

$$+16t^{2}-10 = -16t^{2}+40$$

$$\frac{16t}{10} = \frac{30}{10}$$

$$\frac{1}{10} = \frac{30}{10}$$

$$\frac{1}{10} = \frac{30}{10}$$

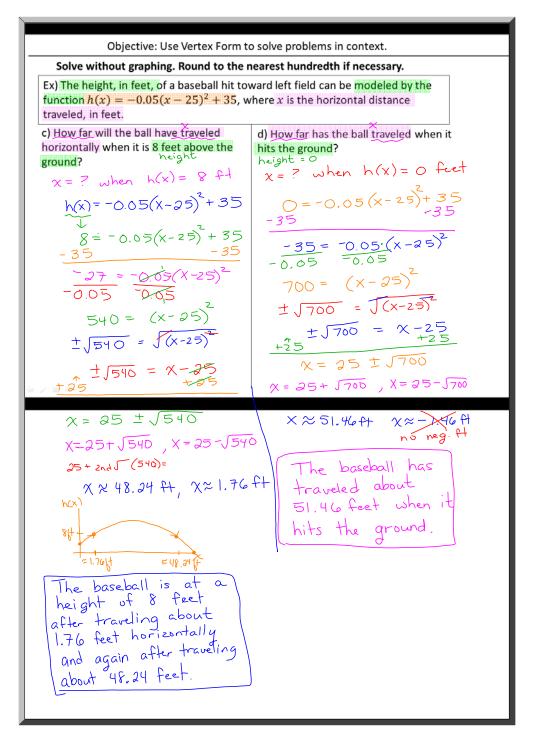
t=
$$-\int \frac{30}{16}$$
, t= $\int \frac{30}{16}$
t= $\int \frac{30}{16}$, t= $\int \frac{30}{16}$
t= $\int \frac{30}{16}$, t= $\int \frac{30}{16}$
t= $\int \frac{30}{16}$, t= $\int \frac{30}{16}$
no negative time
he rock will reach
reight of about

Objective: Use Vertex Form to solve problems in context.

Solve without graphing. Round to the nearest hundredth if necessary.

- Ex) The height, in feet, of a baseball hit toward left field can be modeled by the function $h(x) = -0.05(x 25)^2 + 35$, where x is the horizontal distance traveled, in feet.
- a) What is the baseball's height when it is hit?

$$h(x)=?$$
 when α $\chi=0$ feet


$$h(0) = -0.05(0-25)^{2} + 35$$

= 3.75 feet
height

The baseball's height is 3.75 feet when lit is hit.

b) What is the maximum height the baseball will reach and when does it reach this height?

vertex =
$$(h, k) = (x, h(x))$$

vertex = $(25, 35)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$
 $(41, 61)$

the maximum height of the baseball is 35 feet after traveling 25 feet horizontally.

Objective: Use Vertex Form to solve problems in context.

<u>Closure</u>

The height of a rocket, in feet, t seconds after being launched can be modeled by the function $h(t) = -16(t - 5.2)^2 + 437$. In what type of problem would you solve h(t) = 0 and in what type of problem would you solve h(0) = ?.

You would solve h(t) = 0 to find when the rocket hit the ground. You would solve h(0) = ? to find the height of the rocket when it was launched.