Objective: Use Vertex Form to solve problems in context.

Solve without graphing. Round to the nearest hundredth if necessary.

Ex) A rock is knocked off a cliff into a river. The function $h(t)=-16 t^{2}+40$ models the height of the rock, in feet, after t seconds.
a) When will the rock hit the surface
of the water?
height

$$
t=? \text { when } h(t)=\text { oft }
$$

$$
0=-16 t^{2}+40
$$

$+16 t^{2}+16 t^{2}$

$$
\frac{16 t^{2}}{16}=\frac{40}{16}
$$

$$
t^{2}=\frac{40}{16}
$$

$$
\sqrt{t^{2}}= \pm \sqrt{\frac{40}{16}}
$$

$$
t=-\sqrt{\frac{40}{16}}, t=\sqrt{\frac{40}{16}}
$$

and $\sqrt{ }(40 \div 16)=$

$$
t \approx-1.58 \text { sec } t \approx 1.58
$$

no negative time

The rock hits the surface of the water
after about 1.58 seconds.
b) What is the rock's maximum height and when does it reach this height?

$$
\text { vertex }=(h, k)=(t, h(t))
$$

$$
h(t)=-16 t^{2}+40 \text { vertex }
$$

$$
h(t)=-16(t-0)^{2}+40
$$

$$
\begin{aligned}
& \text { vertex }=(0,40 \\
& \sec
\end{aligned}
$$

The rock's maximum height is 40 feet
when it is knocked off
the cliff.

Objective: Use Vertex Form to solve problems in context.
Solve without graphing. Round to the nearest hundredth if necessary.
Ex) A rock is knocked off a cliff into a river. The function $h(t)=-16 t^{2}+40$ models the height of the rock, in feet, after t seconds.
c) When will the rock reach a height of 10 feet? $h(t)$
$t=$? when $h(t)=10$ feet

$$
\begin{aligned}
& \frac{h(t)}{t}=-16 t^{2}+40 \\
& \frac{10}{16 t^{2}-10}+-16 t^{2}+40 \\
& \frac{16 t^{2}}{16}=\frac{30}{16} \\
& t^{2}=\frac{30}{16} \\
& \sqrt{t^{2}}= \pm \sqrt{\frac{30}{16}}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \quad t=-\sqrt{\frac{30}{16}, t=\sqrt{\frac{30}{16}}} \\
& \quad t \cdot \approx-\sqrt{39} \quad t \approx 1.37 \\
& \text { no negative time sec } \\
& \text { The rock will reach }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The rock will reach } \\
& \text { a height of about } \\
& \text { at seconds. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { a height } \\
& 1.37 \text { seconds. } \\
& \hline
\end{aligned}
$$

Objective: Use Vertex Form to solve problems in context.
Solve without graphing. Round to the nearest hundredth if necessary.
Ex) The height, in feet, of a baseball hit toward left field can be modeled by the function $h(x)=-0.05(x-25)^{2}+35$, where x is the horizontal distance traveled, in feet.
a) What is the baseball's height when it is hit?
$h(x)=$? when
$\chi=0$ feet

$$
\begin{aligned}
h(0) & =-0.05(0-25)^{2}+35 \\
& =3.75 \text { feet }
\end{aligned}
$$ height

The baseball's height is 3.75 feet when it is hit.
b) What is the maximum height the baseball will reach and when does it reach this height?

$$
\begin{array}{r}
\text { reach this height? } \\
\text { vertex }=(h, k)=(x, h(x)) \\
\text { vertex }=\left(\begin{array}{ll}
25 & 3,5) \\
f t, & f t
\end{array}\right. \\
\text { hgris. Max weight }
\end{array}
$$

The maximum height of the baseball is 35 feet after traveling 25 feet horizontally.

Objective: Use Vertex Form to solve problems in context.

Solve without graphing. Round to the nearest hundredth if necessary.

Ex) The height, in feet, of a baseball hit toward left field can be modeled by the function $h(x)=-0.05(x-25)^{2}+35$, where x is the horizontal distance traveled, in feet.
c) How far will the ball have traveled horizontally when it is 8 feet above the ground? heigh
$x=?$ when $h(x)=8 \mathrm{ft}$
$\underbrace{h(x)}_{\downarrow}=-0.05(x-25)^{2}+35$
$8=-0.05(x-25)^{2}+35$
-35
$-\frac{27}{-0.05}=\frac{-0.05(x-25)^{2}}{-0.0,5}$
$540=(x-25)^{2}$
$\pm \sqrt{540}=\sqrt{(x-25)^{-2}}$
$\pm \sqrt{540}=x-25$
d) How far has the ball traveled when it hits the ground?

$$
\begin{aligned}
& \text { height }=0 \\
& x=? \text { when } h(x)=0 \text { fcet }
\end{aligned}
$$

$$
\begin{array}{r}
0=-0.05(x-25)^{2}+35 \\
-35 \\
-35
\end{array}
$$

$$
\frac{-35}{-0.05}=\frac{-0.05 \cdot(x-25)^{2}}{-0.05}
$$

$$
700=(x-25)^{2}
$$

$$
\pm \sqrt{700}=\sqrt{(x-25)^{2}}
$$

$$
+\hat{2} 5
$$

$$
\pm \sqrt{700}=x+25
$$

$$
x=25 \pm \sqrt{700}
$$

$$
x=25+\sqrt{700}, x=25-\sqrt{700}
$$

The baseball is at a
height of 8 feet
after traveling about
1.76 feet horizontally
and again after traveling
about 48.24 feet.

Objective: Use Vertex Form to solve problems in context.

Closure

The height of a rocket, in feet, t seconds after being launched can be modeled by the function $h(t)=-16(t-5.2)^{2}+437$. In what type of problem would you solve $h(t)=0$ and in what type of problem would you solve $h(0)=$?.

You would solve $h(t)=0$ to find when the rocket hit the ground. You would solve $h(0)=$? to find the height of the rocket when it was launched.

