Objective: Simplify variable expressions with rational exponents.

Concept

Rational and irrational numbers expressed in radical form can also be expressed with fractional exponents. When the number has a fractional exponent, it is said to be in rational exponent form.

$$
\frac{b^{\frac{1}{n}}=\sqrt[n]{b}}{\text { and }}
$$

$$
b^{\frac{p}{n}}=\sqrt[n]{b^{p}} \text { or } b^{\frac{p}{n}}=(\sqrt[n]{b})^{p}
$$

Objective: Simplify variable expressions with rational exponents.

Concept

Properties of Rational Exponents		
For all nonzero real numbers a and b and rational numbers m and n		
Words	Numbers	Algebra
Product of Powers Property: to multiply powers with the same base, add the exponents	$12^{\frac{1}{2}} \cdot 12^{\frac{3}{2}}=12^{\frac{1}{2}+\frac{3}{2}}=12^{2}=144$	$a^{m} \cdot a^{n}=a^{m+n}$
Quotient of Powers Property: to divide powers with the same base, subtract the exponents	$\frac{125^{\frac{2}{3}}}{125^{\frac{1}{3}}}=125^{\frac{2}{3}-\frac{1}{3}}=125^{\frac{1}{3}}=5$	$\begin{aligned} \frac{a^{m}}{a^{n}}=a^{m-n} & \text { or } \frac{a^{m}}{a^{n}} \\ & =\frac{1}{a^{n-m}} \end{aligned}$
Power of a Power Property: to raise one power to another, multiply the exponents	$\left(8^{\frac{2}{3}}\right)^{3}=8^{\frac{2}{3} \cdot 3}=8^{2}=64$	$\left(a^{m}\right)^{n}=a^{m \cdot n}$
Power of a Product Property: to find a power of a product, distribute the exponent	$\begin{aligned} (16 \cdot 25)^{\frac{1}{2}}= & 16^{\frac{1}{2}} \cdot 25^{\frac{1}{2}}=4 \cdot 5 \\ & =20 \end{aligned}$	$(a b)^{m}=a^{m} b^{m}$
Power of a Quotient Property: to find a power of a quotient, distribute the exponent	$\left(\frac{16}{81}\right)^{\frac{1}{4}}=\frac{16^{\frac{1}{4}}}{81^{\frac{1}{4}}}=\frac{2}{3}$	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$

Objective: Simplify variable expressions with rational exponents.

Concept

Properties of Rational Exponents

For all nonzero real numbers a and b and rational numbers m and n

Words	Numbers	Algebra
Negative Exponent Property: moving a power from numerator to denominator or vice versa changes the sign on the exponent	$36^{-\frac{1}{2}}=\frac{1}{3^{\frac{1}{2}}}=\frac{1}{6}$	$a^{-n}=\frac{1}{a^{n}}$ or $\frac{1}{a^{-n}}=a^{n}$
Zero Exponent Property: any monomial to a power of O is equal to 1	$\frac{1}{36^{\frac{1}{2}}}=\frac{36^{\frac{1}{2}}}{1}=\frac{6}{1}=6$	$(a)^{0}=1$

Objective: Simplify variable expressions with rational exponents.
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible. Exponents in simplified form should be positive.

Acc Math 3 Simplify Variable Expressions with Rational Exponents.gwb - Monday, November 13, 2017 - Page 5 of 13

Objective: Simplify variable expressions with rational exponents.
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible. Exponents in simplified form should be positive.
quotient of powers

Objective: Simplify variable expressions with rational exponents.
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible. Exponents in simplified form should be positive.

$$
\begin{aligned}
& \left(x^{\frac{3}{4}}\right)^{\frac{2}{3}} \\
\begin{array}{c}
\text { power of a } \\
\text { power }
\end{array} & =x^{\frac{\frac{3}{4}}{4} \cdot \frac{2^{\frac{2}{3}}}{3}} \\
& =x^{\frac{1}{2}} \text { simplified }
\end{aligned}
$$

Objective: Simplify variable expressions with rational exponents.
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible. Exponents in simplified form should be positive.

$$
\begin{aligned}
& \left(3 x^{\frac{4}{3}}\right)\left(-2 x^{-\frac{3}{2}}\right) \\
= & 3 \cdot-2 \cdot \chi^{\frac{4}{3}} \cdot \chi^{\frac{-3}{2}} \\
= & -6 \cdot x^{2 / 3} \\
= & -6 \cdot x^{\frac{8}{2} \cdot 3} \\
= & x^{-\frac{9}{6}}
\end{aligned}
$$

Objective: Simplify variable expressions with rational exponents.
Practice) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible. Exponents in simplified form should be positive.

Objective: Simplify variable expressions with rational exponents.
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible. Exponents in simplified form should be positive.

$$
\begin{aligned}
& \begin{array}{l}
\text { power of a } \\
\text { product }
\end{array}\left(-5 x^{\frac{7}{2}}\right)^{2} \\
& \begin{aligned}
(a b)^{n} & = \\
= & (-5)^{2} \cdot\left(x^{\frac{7}{2}}\right)^{2} \\
a^{n} b^{n} & =25 \cdot x^{\frac{7}{1}} \\
& =25 x^{7} \text { simplified }
\end{aligned}
\end{aligned}
$$

Objective: Simplify variable expressions with rational exponents.
Ex) Simplify the expression. Assume all variables are positive. Simplify numerical values as much as possible. Exponents in simplified form should be positive.

$$
\begin{aligned}
\text { distribute } & x^{\frac{1}{3}}\left(x^{2}-6\right) \\
= & \frac{x^{\frac{1}{3}} \cdot x^{2}-6 \cdot x^{\frac{1}{3}}}{x^{\frac{1}{3}+\frac{2.3}{1 \cdot 3}}-6 x^{\frac{1}{3}}} \\
= & x^{\frac{7}{3}}-6 x^{\frac{1}{3}} \\
= & \text { simplified }
\end{aligned}
$$

Objective: Simplify variable expressions with rational exponents.
Ex) Rewrite the expression with a denominator of 1.

(2) split

$$
=\frac{x^{3}}{1 \cdot x^{\frac{1}{2}}}+\frac{2}{1 \cdot x^{\frac{1}{2}}}
$$

(3) negative exponent property
(4) product of

$$
\begin{aligned}
& x^{3} \cdot x^{-\frac{1}{2}}+2 \cdot x^{-\frac{1}{2}} \\
& x^{2 \cdot 3 \cdot 1}+-\frac{1}{2}+2 x^{-\frac{1}{2}}
\end{aligned}
$$

$$
=\underbrace{}_{\substack{x^{\frac{5}{2}}+2 x^{-\frac{1}{2}} \\ \text { denominator of } \\ \text { form }}}
$$

Objective: Simplify variable expressions with rational exponents.

Closure

Darlene simplified a variable expression with rational exponents. Her work is shown. Identify the two mistakes she made. What is the correct answer?

$$
\begin{array}{llll}
\text { simplify } & 3 x^{\frac{7}{4}} \cdot 2 x^{\frac{1}{2}} & \begin{array}{l}
\text { In step } 1 \text { Darlene added the } 3 \text { and } 2 \text { instead of } \\
\text { multiplying. In step } 2 \text { she added the fractions } \\
\text { without first getting a common denominator. }
\end{array} \\
\text { step } 1: & 5 x^{\frac{7}{4}+\frac{1}{2}} & \text { simplify } & 3 x^{\frac{7}{4}} \cdot 2 x^{\frac{1}{2}} \\
\text { step } 2: & 5 x^{\frac{8}{6}} & \text { step } 1: & 3 \cdot 2 \cdot x^{\frac{7}{4}+\frac{1}{2}} \\
\text { step } 3: & 5 x^{\frac{4}{3}} & \text { step } 2: & 6 \cdot x^{\frac{7}{4}+\frac{2}{4}}
\end{array} \quad \begin{array}{lll}
\text { step } 3: & 6 x^{\frac{9}{4}}
\end{array}
$$

