Objective: Factor polynomials of higher order by grouping

Concept

Factoring a polynomial with four terms can sometimes be accomplished if the polynomial has pairs of terms with common factors, and after the GCF is factored out of the pairs, there is a common factor between the two groups. This method is called grouping and results in a product of two binomials.

$$
x^{3}+x^{2}+2 x+2
$$

first group $\longrightarrow x^{3}+x^{2}+2 x+2 \longleftarrow$ second group
GCF factoring for $\quad x^{2}(x+1)+2(x+1)$
each group

Final product of factors

Objective: Factor polynomials of higher order by grouping

Concept

Steps for Factoring by Grouping

1. Factor out the GCF of each pair of terms. Make sure the binomials are the same.
2. Create a Product of Two Binomials.
3. Factor any binomial that is a difference of squares, difference of cubes, or sum of cubes.

Objective: Factor polynomials of higher order by grouping
Ex) Factor each polynomial completely.

$$
8 x^{3}-20 x^{2} y+6 x-15 y
$$

(1)
(2)

$$
\begin{aligned}
& 4 x^{2}(2 x-5 y)+3(2 x-5 y) \\
& \text { same }=g c f \\
& (2 x-5 y)\left(4 x^{2}+3\right)
\end{aligned}
$$

(3) look for special

$$
\begin{aligned}
& \text { special } \\
& \text { binomials }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (no special } \\
& \text { binomials) }
\end{aligned}
$$

Objective: Factor polynomials of higher order by grouping
Ex) Factor each polynomial completely.

Objective: Factor polynomials of higher order by grouping
Ex) Factor each polynomial completely.
(1)

$$
x^{4}+5 x^{3}-27 x-135
$$

$$
\begin{aligned}
& x^{4}+5 x^{3}-27 x-135 \\
& x^{3}(x+5) \pm 27(x+5)
\end{aligned} \begin{aligned}
& 37 \\
& \times 5 \\
& \times 55 \\
& \hline 135
\end{aligned}
$$

(2)

$$
\frac{(x+5)\left(x^{3}-27\right)}{\left(\underline{x^{3}}-(3)^{3}\right. \text { s tiff of }} \text { two cubes }
$$

$$
(x+5)(x-3)\left((x)^{2}+(x)(3)+(3)\right.
$$

acc 2 factor by grouping 18-19.gwb - Monday, March 11, 2019 - Page 6 of 6

Objective: Factor polynomials of higher order by grouping
Ex) Factor each polynomial completely.

