Objective: Graph a Quadratic Function based on key features.

Concept

x	$y=x^{2}$
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

Objective: Graph a Quadratic Function based on key features.

Steps to Graph Using Key Features

1. Determine the vertex.
2. Determine whether the vertex is a maximum or minimum.
3. Graph the vertex.
4. Graph the axis of symmetry.
5. Graph all known points.
6. Reflect known points across the axis of symmetry.
7. Graph the parabola.

Objective: Graph a Quadratic Function based on key features.
Ex) Graph the quadratic function using the given key features and symmetry. increasing over the interval $(3, \infty)$ (1) minimum is $(3,-4)$ vertex
${ }^{2}$ passes through $(0,5)$

Objective: Graph a Quadratic Function based on key features.
Ex) Graph the quadratic function using the given key features and symmetry.

Objective: Graph a Quadratic Function based on key features.
Ex) Graph the quadratic function using the given key features and symmetry.
increasing over the interval $\left(-\infty, \frac{x}{2}\right)$
range is $(-\infty,-27)$
2) -intercept at -6

(1) vertex

Objective: Graph a Quadratic Function based on key features.
Ex) Graph the quadratic function using the given key features and symmetry.
increasing over the interval $(4, \infty)$ range is $[2, \infty)$
2) passes through $(5,5)$
(1) vertex

Objective: Graph a Quadratic Function based on key features.
Ex) Graph the quadratic function using the given key features and symmetry.
(2) x-intercepts are -5 and -1 the y-coordinate of the vertex is 6 (3) passes through $(-4,4.5)$

Objective: Graph a Quadratic Function based on key features.
Ex) Graph the quadratic function using the given key features and symmetry.

y-intercept is 7

(1) vertex is $(2,6)$
as $x \rightarrow-\infty, f(x) \rightarrow+\infty$
as $x \rightarrow+\infty, f(x) \rightarrow+\infty$

