Objective: Solve context problems using the Quadratic Formula
Concept
Given the quadratic equation $a x^{2}+b x+c=0$, the solutions can be found using what is called the Quadratic Formula.

Quadratic Formula

$$
x=\frac{-b \pm \sqrt{(b)^{2}-4 a c}}{2 a}
$$

Steps to Solve a Quadratic Equation Using the Quadratic Formula

1. Write the equation in standard form: $a x^{2}+b x+c=0$
2. Identify the values of a, b, and c.
3. Substitute the values into the Quadratic Formula.
4. Calculate and simplify the solutions.

Objective: Solve context problems using the Quadratic Formula
Solve using the quadratic formula. Round to the nearest hundredth if necessary. Write a sentence conclusion.
Ex) The quadratic function $h(t)=-16 t^{2}+v t+h$ models the height, in feet, of an object fired upward after t seconds, where v is the starting velocity and h is the starting height of the object.
h
A diver stands on a platform 30 feet above the surface of the water and jumps up and out with a beginning speed of 8 feet per second.
a) How long will it take for the diver to hit the surface of the water?
(1) write the function model. $h(t)=-16 t^{2}+v t+h$
$h=30$

$v=8$

$$
\begin{aligned}
& \text { (3) solve. } \\
& t=\frac{-1(b) \pm \sqrt{(b)^{2}-4 a c}}{2 a}
\end{aligned}
$$ $h(t)=-16 t^{2}+8 t+30$

(2) set up the problem

conclusion

$$
t=\frac{-8-\sqrt{(8)^{2}-4(-16)(30)}}{-32}
$$

$$
\begin{aligned}
& \text { The diver will } \\
& \text { hit the surface } \\
& \text { of the water after } \\
& \text { about } 1.64 \text { seconds. }
\end{aligned}
$$

Objective: Solve context problems using the Quadratic Formula

Solve using the quadratic formula. Round to the nearest hundredth if necessary.

 Write a sentence conclusion.Ex) The quadratic function $h(t)=-16 t^{2}+v t+h$ models the height, in feet, of an object fired upward after t seconds, where v is the starting velocity and h is the starting height of the object.

A diver stands on a platform 30 feet above the surface of the water and jumps up and out with a beginning speed of 8 feet per second.
b) Can the diver reach a height of 35 feet above the water? If yes, when will the diver reach this height. If no, explain your reasoning.

cale. $\left(-8-2 n d 5(-256)^{*}\right)$

Objective: Solve context problems using the Quadratic Formula

Solve using the quadratic formula. Round to the nearest hundredth if necessary.

 Write a sentence conclusion.Practice) The quadratic function $h(t)=-16 t^{2}+v t+h$ models the height, in feet, of an object fired upward after t seconds, where v is the starting velocity and h is the starting height of the object.

A football player released the ball 6 feet above the ground with an initial velocity of 18 feet per second.
a) If no other player touches the ball, when will it hit the ground?

$$
\begin{aligned}
& \begin{array}{l}
h(t)=-16 t^{2}+18 t+6 \\
\text { means } h(t)=0
\end{array} \\
& \begin{array}{l}
0=-16 t^{2}+18 t+6 \\
a=-16, b=18, c=6
\end{array} \\
& t=\frac{-1(18) \pm \sqrt{(18)^{2}-[4(-16)(6)]}}{2(-16)} \\
& \text { the ball will hit } \\
& \text { after about } \\
& 1.39 \text { seconds. }
\end{aligned},
$$

b) Can the ball reach a height of 10 feet? If yes, when will the ball reach this height. If no, explain your reasoning.
$h(t)=-16 t^{2}+18 t+6$
means $h(t)=10$

$$
\begin{aligned}
& 10=-16 t^{2}+18 t+6 \\
& 0=-16 t^{2}+18 t-4 \\
& a=-16, b=18, c=-4
\end{aligned}
$$

The ball will be at a height of 10 feet at about 0.30 seconds and again at about 0.82 seconds.

Objective: Solve context problems using the Quadratic Formula
Solve using the quadratic formula. Round to the nearest hundredth if necessary. Write a sentence conclusion.

Ex) The length and width of a patio are $(x+9)$ feet and $(x+7)$ feet, respectively. If the area of the patio is 190 square feet, what are the dimensions of the patio?
(1) write the model patio is rectangular

(3) dimensions

$$
\begin{aligned}
\text { length } & =(x+9) \text { feet } \\
& =(5.82+9) \text { feet } \\
& =14.82 \text { feet } \\
\text { width } & =(x+7) \text { feet } \\
& =(5.82+7) \text { feet } \\
& =12.82 \text { feet }
\end{aligned}
$$

(2) solve

$$
\begin{aligned}
& 190=(x+9)(x+7) \\
& 190=x^{2}+16 x+63 \\
& -190 \\
& \hline 0=\frac{190}{\frac{1}{=}} x^{2}+\frac{16 x}{\downarrow}-\frac{127}{\downarrow} \\
& \hline=16 \quad c=-127
\end{aligned}
$$

$$
x=\frac{-1(16) \pm \sqrt{(16)^{2}-4(1)(-127)}}{2(1)}
$$

$$
x=\frac{-16 \pm \sqrt{(16)^{2}-4(1)(-127)}}{2}
$$

The dimensions of the patio are about 14.82 feet and 12.82 feet.

Objective: Solve context problems using the Quadratic Formula

Solve using the quadratic formula. Round to the nearest hundredth if necessary. Write a sentence conclusion.

Practice) The quarterback of a football team throws a pass to the team's receiver. The height h, in meters, of the football can be modeled by $h=-4.9 t^{2}+3 t+$ 1.75, where t is the elapsed time in seconds. If the receiver catches the football at a height of 0.25 meters, how long does the ball remain in the air?

$$
\begin{aligned}
& h=-4.9 t^{2}+3 t+1.75 \\
& \text { means } h(t)=0.25
\end{aligned}
$$

The ball remains in the air for about 0.94 seconds.

Objective: Solve context problems using the Quadratic Formula

Solve using the quadratic formula. Round to the nearest hundredth if necessary. Write a sentence conclusion.

Practice) A scientist is growing bacteria in a lab for study. One particular type of bacteria grows at a rate of $y=2 t^{2}+3 t+500$. A second bacteria grows at a rate of $y=3 t^{2}+t+300$. In both of these functions, y is the number of bacteria after t minutes. When is there an equal number of both types of bacteria?

$$
\begin{gathered}
\text { given: } y=2 t^{2}+3 t+500 \text { and } y=3 t^{2}+t+300 \\
\text { means } 2 t^{2}+3 t+500=3 t^{2}+t+300 \\
0=1 t^{2}-2 t-200 \\
a=1, \quad b=-2, \quad c=-200 \\
t=\frac{-1(-2) \pm \sqrt{(-2)^{2}-[4(1)(-200)]}}{2(1)} \\
t=\frac{2 \pm \sqrt{804}}{2} \\
t \approx 13.18 \text { or } t \approx 15.18
\end{gathered}
$$

There are an equal number of both types of bacteria after about 15.18 minutes.

