Objective: Find the Area of Non-Right Triangles

Concept

To use the area of a triangle formula $A=\frac{1}{2} b h$, both the base and height measurements of the triangle must be known. For when the height is not known, a more general formula for the area of a triangle can be determined using trigonometry.

1. Given non-right $\triangle A B C$, draw an altitude $\overline{A D}$ to represent the height, h, of the triangle.

The base of this triangle is now a, with height h.
2. Using right triangle $A C D$, write a trigonometric equation using sine and $\angle C$.

$$
\sin C=\frac{h}{b}
$$

3. Solve $\sin C=\frac{h}{b}$ for height, h.

$$
h=b \sin C
$$

4. Using the area of a triangle formula $A=\frac{1}{2} b h$, substitute a for the base b, and $b \sin C$ for h.

$$
A=\frac{1}{2} b h \rightarrow A=\frac{1}{2} a b \sin C
$$

(Where a and b are two sides of a triangle and C is the included angle.)

Objective: Find the Area of Non-Right Triangles

Concept

Area Formula for a Triangle Given Two Sides and the Included Angle

The area of $\triangle A B C$ with sides a, b, and c can be found using the lengths of two of its sides and the sine of the included angle:
$A=\frac{1}{2} a b \sin C$
$A=\frac{1}{2} a c \sin B$
$A=\frac{1}{2} b c \sin A$

Objective: Find the Area of Non-Right Triangles

Concept
Heron's Area Formula

Given any triangle with side lengths a, b, and c, the area of the triangle is

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where
$s=\frac{a+b+c}{2}$. half the triangle's perimeter

Objective: Find the Area of Non-Right Triangles

Concept

Steps to Find the Area of a Non-Right Triangle

1. Determine the given information.
2. If two sides and the included angle are known, use $A=\frac{1}{2} a b \sin C$.
3. If three sides are known, use Heron's Area Formula $A=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$.
4. If neither of these two is the case, find any needed measures using the Law of Sines and/or Law of Cosines and then find the area using the appropriate formula.

Objective: Find the Area of Non-Right Triangles
Ex) Find the area of the triangle to the nearest tenth.

(1) Use

$$
\begin{aligned}
& A=\frac{1}{2} \cdot a \cdot b \cdot \sin C \\
& A=\frac{1}{2}(15 \mathrm{ft})(12 \mathrm{ft}) \sin 52^{\circ} \\
& A \approx 70.9 \mathrm{ft}^{2}
\end{aligned}
$$

(2) The area of the triangle is about 170.9 square feet.

Objective: Find the Area of Non-Right Triangles
Ex) The sides of a triangle are $14 \mathrm{~cm}, 9 \mathrm{~cm}$ and 6 cm . Find the area of the triangle to the nearest tenth.

(1)Use Heron's Formula

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

$$
\begin{aligned}
& \text { (2) find } s \quad \begin{aligned}
& 29 \mathrm{~cm} \\
& s=\frac{a+b+c}{2}=\frac{14 \mathrm{~cm}+9 \mathrm{~cm}+6 \mathrm{~cm}}{2} \\
& s=14.5 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

(3) $A=\sqrt{14.5 \mathrm{~cm}(14.5 \mathrm{~cm}-14 \mathrm{~cm})(14.5 \mathrm{~cm}-9 \mathrm{~cm})(14.5 \mathrm{~cm}-6 \mathrm{~cm})}$

$$
\begin{aligned}
& A=\sqrt{14.5 \mathrm{~cm}(0.5 \mathrm{~cm})(5.5 \mathrm{~cm})(8.5 \mathrm{~cm})} \\
& A=\sqrt{338.9375 \mathrm{~cm}^{4}} \approx 18.4 \mathrm{~cm}^{2}
\end{aligned}
$$

(4) The area of the triangle is about $18.4 \mathrm{~cm}^{2}$

Objective: Find the Area of Non-Right Triangles
Practice) Find the area of the triangle. Round to the nearest tenth.

The area of the triangle is about 49.2 square inches.

$$
\begin{aligned}
& \text { 1. find } m \angle C \\
& \frac{\sin C}{9}=\frac{\sin 57^{\circ}}{11.1} \\
& m \angle C=\sin ^{-1}\left(\frac{9 \sin 57^{\circ}}{11.1}\right) \\
& m \angle C \approx 42.84^{\circ}
\end{aligned}
$$

3. find the area using: $A=\frac{1}{2} \operatorname{acsin} B$
$A \approx \frac{1}{2}(11.1 \mathrm{in})(9 \mathrm{in}) \sin 80.16^{\circ}$
$A \approx 49.2 \mathrm{in}^{2}$

Objective: Find the Area of Non-Right Triangles

Closure

Describe the relationship between the angle and the two sides of the triangle in the area formula $A=\frac{1}{2} a b \sin C$.

The angle, C, is the included angle, which is the angle between the two sides of the triangle, a and b.

