Objective: Find the domain of functions with rational exponents.
Concept

$$
\begin{aligned}
& \text { Rational Exponents } \\
& \qquad \begin{array}{|c}
b^{\frac{1}{n}}=\sqrt[n]{b} \\
\text { and } \\
b^{\frac{p}{n}}=\sqrt[n]{b^{p}} \text { or } b^{\frac{p}{n}}=(\sqrt[n]{b})^{p}
\end{array}
\end{aligned}
$$

Negative Exponent Property

$$
a^{-n}=\frac{1}{a^{n}} \text { or } \frac{1}{a^{-n}}=a^{n}
$$

Objective: Find the domain of functions with rational exponents.

Concept

Negative exponents can be used to write rational functions.

For example, $f(x)=x^{-1}$ is the same as $f(x)=\frac{1}{x}$, the parent function for rational functions.

Recall, the domain of a rational function must be values of the independent variable, such as x, that make the function defined. Any value of the independent variable that makes the function undefined (creates division by zero) or creates imaginary values is excluded from the domain.

Recall, the domain of a square root function is only values of the independent variable, such as x, that create non-negative radicands, so that the range will be in the set of real numbers. (radicand ≥ 0).

Acc Math 3 Find the Domain of Functions with Rational Exponents.gwb - Thursday, October 31, 2019 - Page 3 of 9

Objective: Find the domain of functions with rational exponents.
Ex) Rewrite the function in radical form and find the domain of the function. Write the domain in set and interval notation.

$$
f(x)=\frac{3}{4} x^{-\frac{2}{3}}
$$

(1)

$$
\begin{aligned}
& f(x)=\frac{3}{4} \cdot \frac{1}{x^{2 / 3}} \\
& f(x)=\frac{3}{4 x^{2 / 3}} \\
& f(x)=\frac{3}{4 \sqrt[3]{x^{2}}} \text { radical } \\
& \text { form }
\end{aligned}
$$

(2) domain

$$
\text { denominator } \neq 0
$$

$$
\begin{aligned}
& \frac{4 \sqrt[3]{x^{2}}}{4} \neq \frac{0}{4} \\
&\left(\sqrt[3]{x^{2}}\right)^{3} \neq(0)^{3} \\
& x^{2} \neq 0
\end{aligned}
$$

Objective: Find the domain of functions with rational exponents.
Ex) Rewrite the function in radical form and find the domain of the function. Write the domain in set and interval notation.
(1)

$$
g(x)=\frac{5}{7} x^{-\frac{1}{2}}
$$

$$
\begin{aligned}
& g(x)=\frac{5}{7} \cdot \frac{1}{x^{1 / 2}} \\
& g(x)=\frac{5}{7 \sqrt{x}} \text { radical } \text { form }
\end{aligned}
$$

(2) domain

$$
\begin{aligned}
& \begin{array}{l}
\text { den. } \neq 0 \\
\begin{array}{l}
\frac{7 \sqrt{x}}{7} \neq 0
\end{array} \\
(\sqrt{x})^{2} \neq(0)^{2} \\
x \neq 0
\end{array} \\
& \begin{array}{l}
\text { set: }\{x \mid x>0\} \\
\text { interval: }(0, \infty)
\end{array} \text { domain } \geq 0
\end{aligned}
$$

Objective: Find the domain of functions with rational exponents.
Ex) Rewrite the function in radical form and find the domain of the function. Write the domain in set and interval notation.

$$
\begin{aligned}
& p(t)=3 t^{-\frac{1}{3}}-2 \\
& p(t)=\frac{3}{t^{1 / 3}}-2 \\
& p(t)=\frac{3}{\sqrt[3]{t}}-2 \quad \begin{array}{l}
\text { radical } \\
\text { form }
\end{array}
\end{aligned}
$$

(2) domain

$$
\begin{aligned}
& \text { den. } \neq 0 \quad \text { dom. dom. } \\
& \sqrt[3]{t} \neq 0 \quad \text { domain } \\
& (\sqrt[3]{t})^{3} \neq 0^{3} \sqrt{\text { set }\{t \mid t<0 \text { or } t>0\}} \\
& t \neq 0 \quad \text { interval }(-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

Objective: Find the domain of functions with rational exponents.
Ex) Rewrite the function in radical form and find the domain of the function. Write the domain in set and interval notation.

$$
v(t)=8 t^{-\frac{1}{2}}+3
$$

(1)

$$
\begin{aligned}
& V(t)=\frac{8}{t^{1 / 2}}+3 \\
& V(t)=\frac{8}{\sqrt{t}}+3 \quad \begin{array}{r}
\text { radical } \\
\text { form }
\end{array}
\end{aligned}
$$

(2) domain
den. $\neq 0$ and radicand ≥ 0

$$
\sqrt{t} \neq 0
$$

set: $\{t \mid t>0\}$
interval $(0, \infty)$

Objective: Find the domain of functions with rational exponents.
Ex) Rewrite the function in radical form and find the domain of the function. Write the domain in set and interval notation.

$$
f(x)=x\left(x^{2}-25\right)^{-\frac{1}{2}}
$$

$$
f(x)=\frac{x}{\sqrt{x^{2}-25}} \text { radical } \begin{align*}
& \text { form } \tag{1}
\end{align*}
$$domain.

Objective: Find the domain of functions with rational exponents.
Ex) Rewrite the function in radical form and find the domain of the function. Write the domain in set and interval notation.
$g(x)=2(x-1)\left(x^{2}+1\right)^{-\frac{1}{2}}$
(1) $g(x)=\frac{2(x-1)}{\sqrt{x^{2}+1}} \begin{array}{r}\text { radical } \\ \text { form }\end{array}$
(2) domain

$$
\operatorname{den} \neq 0
$$

$\sqrt{x^{2}+1} \neq 0$

$$
x^{2}+1 \neq 0
$$

$$
x^{2} \neq-1
$$

$$
\sqrt{x^{2}} \neq \pm \sqrt{-1}
$$

radicand ≥ 0

$$
x^{2}+1 \geq 0
$$

domain is the
set of all real numbers
interval $(-\infty, \infty)$

Objective: Find the domain of functions with rational exponents.
Ex) Rewrite the function in radical form and find the domain of the function. Write the domain in set and interval notation.

(2) domain

$$
\sqrt[3]{t^{2}-9} \neq 0
$$

$$
t^{2}-9 \neq 0
$$

$$
\begin{gathered}
t^{2} \neq 9 \\
\sqrt{t^{2}} \neq \pm \sqrt{9}
\end{gathered}
$$

$$
t \neq \pm 3 \quad \text { interval }(-\infty,-3) \cup(-3,3) \cup(3, \infty)
$$

